File size: 10,702 Bytes
1df74c6 d2b7e94 1df74c6 d2b7e94 1df74c6 d5d0921 1df74c6 d5d0921 1df74c6 d5d0921 1df74c6 d2b7e94 1df74c6 d2b7e94 1df74c6 d5d0921 1df74c6 bed01bd 1df74c6 bed01bd 1df74c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import torch
import torch.nn.functional as F
import transformers
from modules.finetune.model.encoder import DVAEEncoder, get_encoder_config
from modules.finetune.utils.output import ansi, get_ansi_len, output_iter
from .utils.dataset import AudioCollator, XzListTar
from .utils.logger import MetricLogger
from .utils.model import quantize
IGNORE_TOKEN_ID = transformers.trainer_pt_utils.LabelSmoother.ignore_index
def train_speaker_embeddings(
chat,
dataset,
gpt,
batch_size=16,
epochs=10,
train_text=True,
speaker_embeds=None,
):
tokenizer = chat.pretrain_models["tokenizer"]
decoder_decoder = chat.pretrain_models["decoder"]
decoder_decoder.eval().requires_grad_(False)
decoder_encoder = DVAEEncoder(**get_encoder_config(decoder_decoder.decoder)).to(
device=dataset.device
)
decoder_encoder.eval().requires_grad_(False)
dvae_decoder = chat.pretrain_models["dvae"]
dvae_decoder.eval().requires_grad_(False)
dvae_encoder = DVAEEncoder(**get_encoder_config(dvae_decoder.decoder)).to(
device=dataset.device
)
dvae_encoder.eval().requires_grad_(False)
if speaker_embeds is None:
speaker_embeds = {
speaker: torch.randn(
768,
device=dataset.device,
requires_grad=True,
)
for speaker in dataset.speakers
}
for speaker_embed in speaker_embeds.values():
std, mean = chat.pretrain_models["spk_stat"].chunk(2)
speaker_embed.data = speaker_embed.data * std + mean
SPEAKER_TOKEN_ID = tokenizer.convert_tokens_to_ids("[spk_emb]")
AUDIO_EOS_TOKEN_ID = 0
AUDIO_PAD_TOKEN_ID = AUDIO_EOS_TOKEN_ID
optimizer = torch.optim.Adam(
speaker_embeds.values(), lr=1e-2, weight_decay=0, betas=[0.9, 0.95], eps=1e-5
)
loss_fn = torch.nn.CrossEntropyLoss()
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, epochs, 1e-7)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=AudioCollator(text_pad=tokenizer.pad_token_id),
)
logger = MetricLogger()
logger.create_meters(loss=None, mse_loss=None, audio_loss=None, text_loss=None)
for _epoch in range(epochs):
_epoch += 1
logger.reset()
header = "{blue_light}{0}: {1}{reset}".format(
"Epoch", output_iter(_epoch, epochs), **ansi
)
header = header.ljust(max(len("Epoch"), 30) + get_ansi_len(header))
iterator = logger.log_every(loader, header=header, tqdm_header="Batch")
for batch in iterator:
speakers = batch["speaker"]
text_input_ids = batch["text_input_ids"]
text_attention_mask = batch["text_attention_mask"]
audio_mel_specs = batch["audio_mel_specs"]
audio_attention_mask = batch["audio_attention_mask"]
batch_size, text_len = text_attention_mask.size()
dvae_audio_latents = dvae_encoder(audio_mel_specs, audio_attention_mask)
_, dvae_audio_input_ids = quantize(
dvae_decoder.vq_layer.quantizer, dvae_audio_latents
)
dvae_audio_input_ids[~audio_attention_mask.bool()] = AUDIO_PAD_TOKEN_ID
extended_audio_attention_mask = torch.cat(
[
audio_attention_mask,
torch.zeros(
(batch_size, 1),
dtype=audio_attention_mask.dtype,
device=audio_attention_mask.device,
),
],
dim=1,
)
extended_audio_input_ids = torch.cat(
[
dvae_audio_input_ids,
AUDIO_PAD_TOKEN_ID
* torch.ones(
(batch_size, 1, gpt.num_vq),
dtype=dvae_audio_input_ids.dtype,
device=dvae_audio_input_ids.device,
),
],
dim=1,
)
indices = audio_attention_mask.int().sum(dim=1)
for i in range(batch_size):
extended_audio_attention_mask[i, indices[i]] = 1
extended_audio_input_ids[i, indices[i]] = AUDIO_EOS_TOKEN_ID
input_ids = torch.cat(
[
text_input_ids.unsqueeze(-1).repeat(1, 1, gpt.num_vq),
extended_audio_input_ids,
],
dim=1,
)
attention_mask = torch.cat(
[text_attention_mask, extended_audio_attention_mask], dim=1
)
text_mask = torch.cat(
[
torch.ones_like(text_attention_mask, dtype=bool),
torch.zeros_like(extended_audio_attention_mask, dtype=bool),
],
dim=1,
)
labels = input_ids.clone()
labels[~attention_mask.bool()] = IGNORE_TOKEN_ID
inputs_embeds = gpt.get_emb(input_ids=input_ids, text_mask=text_mask)
indices = torch.all(input_ids == SPEAKER_TOKEN_ID, dim=-1)
for i, speaker in enumerate(speakers):
inputs_embeds[i, indices[i]] = F.normalize(
speaker_embeds[speaker].to(dtype=inputs_embeds.dtype),
p=2.0,
dim=-1,
eps=1e-12,
).unsqueeze(0)
outputs = gpt.gpt.forward(
inputs_embeds=inputs_embeds, attention_mask=attention_mask
)
hidden_states = outputs.last_hidden_state
text_hidden_states = hidden_states[:, : text_len - 1]
audio_hidden_states = hidden_states[:, text_len - 1 : -1]
audio_logits = torch.stack(
[gpt.head_code[i](audio_hidden_states) for i in range(gpt.num_vq)],
dim=2,
)
audio_loss = loss_fn(
audio_logits.flatten(0, 2), labels[:, text_len:].flatten(0, 2)
)
loss = audio_loss
text_logits = gpt.head_text(text_hidden_states)
text_loss = loss_fn(
text_logits.flatten(0, 1), labels[:, 1:text_len, 0].flatten(0, 1)
)
loss += text_loss
logger.meters["text_loss"].update(text_loss.item(), n=batch_size)
gpt_gen_mel_specs = decoder_decoder(
audio_hidden_states[:, :-1].transpose(1, 2)
).transpose(1, 2)
mse_loss = torch.nn.functional.mse_loss(gpt_gen_mel_specs, audio_mel_specs)
loss += 0.01 * mse_loss
optimizer.zero_grad()
if train_text:
# just for test
text_loss.backward()
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(speaker_embeds.values(), 1.0)
optimizer.step()
logger.meters["loss"].update(loss.item(), n=batch_size)
logger.meters["mse_loss"].update(mse_loss.item(), n=batch_size)
logger.meters["audio_loss"].update(audio_loss.item(), n=batch_size)
lr_scheduler.step()
optimizer.zero_grad()
return speaker_embeds
if __name__ == "__main__":
import argparse
import os
import pathlib
import numpy as np
from modules import config
from modules.devices import devices
from modules.models import load_chat_tts
from modules.speaker import Speaker
config.runtime_env_vars.no_half = True
config.runtime_env_vars.use_cpu = []
devices.reset_device()
parser = argparse.ArgumentParser()
parser.add_argument("--save_folder", type=str, default="./")
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--epochs", type=int, default=100)
parser.add_argument("--train_text", action="store_true", help="train text loss")
# 初始化 speaker
parser.add_argument("--init_speaker", type=str)
parser.add_argument(
"--data_path",
type=str,
default="datasets/data_speaker_a/speaker_a.list",
help="the data_path to json/list file",
)
parser.add_argument("--tar_path", type=str, help="the tarball path with wavs")
parser.add_argument(
"--tar_in_memory", action="store_true", help="load tarball in memory"
)
args = parser.parse_args()
data_path: str = args.data_path
tar_path: str | None = args.tar_path
tar_in_memory: bool = args.tar_in_memory
train_text: bool = args.train_text
# gpt_lora: bool = args.gpt_lora
# gpt_kbit: int = args.gpt_kbit
save_folder: str = args.save_folder
batch_size: int = args.batch_size
epochs: int = args.epochs
init_speaker: str = args.init_speaker
speaker_embeds_save_path = os.path.join(save_folder, "speaker_embeds.npz")
chat = load_chat_tts()
dataset = XzListTar(
root=data_path,
tokenizer=chat.pretrain_models["tokenizer"],
vocos_model=chat.pretrain_models["vocos"],
tar_path=tar_path,
tar_in_memory=tar_in_memory,
device=devices.get_device_for("trainer"),
# speakers=None, # set(['speaker_A', 'speaker_B'])
)
print("len(dataset)", len(dataset))
speaker_embeds = None
if init_speaker:
spk: Speaker = Speaker.from_file(init_speaker)
speaker_embeds = {
speaker: torch.tensor(
spk.emb,
device=devices.get_device_for("trainer"),
requires_grad=True,
)
for speaker in dataset.speakers
}
speaker_embeds = train_speaker_embeddings(
chat,
dataset,
chat.pretrain_models["gpt"],
batch_size=batch_size,
epochs=epochs,
train_text=train_text,
speaker_embeds=speaker_embeds,
)
speaker_outs = {
speaker: Speaker(speaker_embed.detach().cpu(), f"ep{epochs}_{speaker}")
for speaker, speaker_embed in speaker_embeds.items()
}
time_str = np.datetime_as_string(np.datetime64("now", "s"))
time_str = time_str.replace(":", "_").replace(" ", "_").replace("-", "_")
for speaker, speaker_out in speaker_outs.items():
torch.save(
speaker_out,
pathlib.Path(save_folder) / f"spk_{speaker}_{time_str}_ep{epochs}.pt",
)
# example
"""
python -m modules.finetune.train_speaker \
--data_path datasets/data_speaker_a/speaker_a.list \
--save_folder ./data \
--init_speaker ./data/speakers/Bob.pt \
--epochs 100 \
--batch_size 6 \
--train_text
"""
|