File size: 6,034 Bytes
01e655b c5458aa 01e655b ebc4336 01e655b 02e90e4 01e655b ebc4336 01e655b c5458aa 01e655b ebc4336 c5458aa 01e655b ebc4336 01e655b ebc4336 01e655b 02e90e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import base64
from fastapi import HTTPException
import io
import soundfile as sf
from pydantic import BaseModel
from modules.api.Api import APIManager
from modules.utils.audio import apply_prosody_to_audio_data
from modules.normalization import text_normalize
from modules import generate_audio as generate
from modules.speaker import speaker_mgr
from modules.ssml_parser.SSMLParser import create_ssml_parser
from modules.SynthesizeSegments import (
SynthesizeSegments,
combine_audio_segments,
)
from modules.api import utils as api_utils
class SynthesisInput(BaseModel):
text: str = ""
ssml: str = ""
class VoiceSelectionParams(BaseModel):
languageCode: str = "ZH-CN"
name: str = "female2"
style: str = ""
temperature: float = 0.3
topP: float = 0.7
topK: int = 20
seed: int = 42
class AudioConfig(BaseModel):
audioEncoding: api_utils.AudioFormat = "mp3"
speakingRate: float = 1
pitch: float = 0
volumeGainDb: float = 0
sampleRateHertz: int
batchSize: int = 1
spliterThreshold: int = 100
class GoogleTextSynthesizeRequest(BaseModel):
input: SynthesisInput
voice: VoiceSelectionParams
audioConfig: dict
class GoogleTextSynthesizeResponse(BaseModel):
audioContent: str
async def google_text_synthesize(request: GoogleTextSynthesizeRequest):
input = request.input
voice = request.voice
audioConfig = request.audioConfig
# 提取参数
# TODO 这个也许应该传给 normalizer
language_code = voice.languageCode
voice_name = voice.name
infer_seed = voice.seed or 42
audio_format = audioConfig.get("audioEncoding", "mp3")
speaking_rate = audioConfig.get("speakingRate", 1)
pitch = audioConfig.get("pitch", 0)
volume_gain_db = audioConfig.get("volumeGainDb", 0)
batch_size = audioConfig.get("batchSize", 1)
# TODO spliter_threshold
spliter_threshold = audioConfig.get("spliterThreshold", 100)
# TODO sample_rate
sample_rate_hertz = audioConfig.get("sampleRateHertz", 24000)
params = api_utils.calc_spk_style(spk=voice.name, style=voice.style)
# TODO maybe need to change the sample rate
sample_rate = 24000
# 虽然 calc_spk_style 可以解析 seed 形式,但是这个接口只准备支持 speakers list 中存在的 speaker
if speaker_mgr.get_speaker(voice_name) is None:
raise HTTPException(
status_code=400, detail="The specified voice name is not supported."
)
if audio_format != "mp3" and audio_format != "wav":
raise HTTPException(
status_code=400, detail="Invalid audio encoding format specified."
)
try:
if input.text:
# 处理文本合成逻辑
text = text_normalize(input.text, is_end=True)
sample_rate, audio_data = generate.generate_audio(
text,
temperature=(
voice.temperature
if voice.temperature
else params.get("temperature", 0.3)
),
top_P=voice.topP if voice.topP else params.get("top_p", 0.7),
top_K=voice.topK if voice.topK else params.get("top_k", 20),
spk=params.get("spk", -1),
infer_seed=infer_seed,
prompt1=params.get("prompt1", ""),
prompt2=params.get("prompt2", ""),
prefix=params.get("prefix", ""),
)
elif input.ssml:
# 处理SSML合成逻辑
parser = create_ssml_parser()
segments = parser.parse(input.ssml)
for seg in segments:
seg["text"] = text_normalize(seg["text"], is_end=True)
if len(segments) == 0:
raise HTTPException(
status_code=400, detail="The SSML text is empty or parsing failed."
)
synthesize = SynthesizeSegments(batch_size=batch_size)
audio_segments = synthesize.synthesize_segments(segments)
combined_audio = combine_audio_segments(audio_segments)
buffer = io.BytesIO()
combined_audio.export(buffer, format="wav")
buffer.seek(0)
audio_data = buffer.read()
else:
raise HTTPException(
status_code=400, detail="Either text or SSML input must be provided."
)
audio_data = apply_prosody_to_audio_data(
audio_data,
rate=speaking_rate,
pitch=pitch,
volume=volume_gain_db,
sr=sample_rate,
)
buffer = io.BytesIO()
sf.write(buffer, audio_data, sample_rate, format="wav")
buffer.seek(0)
if audio_format == "mp3":
buffer = api_utils.wav_to_mp3(buffer)
base64_encoded = base64.b64encode(buffer.read())
base64_string = base64_encoded.decode("utf-8")
return {
"audioContent": f"data:audio/{audio_format.lower()};base64,{base64_string}"
}
except Exception as e:
import logging
logging.exception(e)
if isinstance(e, HTTPException):
raise e
else:
raise HTTPException(status_code=500, detail=str(e))
def setup(app: APIManager):
app.post(
"/v1/text:synthesize",
response_model=GoogleTextSynthesizeResponse,
description="""
google api document: <br/>
[https://cloud.google.com/text-to-speech/docs/reference/rest/v1/text/synthesize](https://cloud.google.com/text-to-speech/docs/reference/rest/v1/text/synthesize)
- 多个属性在本系统中无用仅仅是为了兼容google api
- voice 中的 topP, topK, temperature 为本系统中的参数
- voice.name 即 speaker name (或者speaker seed)
- voice.seed 为 infer seed (可在webui中测试具体作用)
- 编码格式影响的是 audioContent 的二进制格式,所以所有format都是返回带有base64数据的json
""",
)(google_text_synthesize)
|