Spaces:
Runtime error
Runtime error
import json | |
import torch | |
from transformers import pipeline | |
import streamlit as st | |
# Load the text-generation pipeline | |
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha", torch_dtype=torch.bfloat16, device_map="auto") | |
delimiter = "####" | |
system_message = f""" | |
You will be provided with user data. \ | |
The user data will be delimited with \ | |
{delimiter} characters. | |
Extract key information as shown in the examples shown below, to add an item in the ERPnext application. Give the output as a python dictionary object. Do not use information outside from what | |
is given inside the text to fill the values. Do not provide any explaination. | |
Example1: | |
prompt: "I had made an order for 6 Units of item Logitech G15. The platform said that there were 10 Units available in stock before i made my purchase, but now it shows that the item is out of stock even though I have made a payment of 6000 towards my order.", | |
"item_code": "None", | |
"item_name": "Logitech G15", | |
"item_group": "None", | |
"stock_uom": "Unit", | |
"description": "None", | |
"standard_rate": 1000 | |
Example2: | |
prompt": "Hello, I have not received my order of 5Litres Saffola Gold oil. I made an order on 07-09-2023", | |
"item_code": "None", | |
"item_name": "Saffola Gold Oil", | |
"item_group": "None", | |
"stock_uom": "Litres", | |
"description": "None", | |
"standard_rate": "None" | |
Example3: | |
prompt": "Please add an entry of a new item in our inventory, Code IB707, and name i-ball Keyboard K-5. Current stock includes 5000 Nos of the item, grouped under Products. Price per unit is Rs. 1500.", | |
"item_code": "IB707", | |
"item_name": "i-ball Keyboard K-5", | |
"item_group": "Product", | |
"stock_uom": "Nos", | |
"description": "None", | |
"standard_rate": 1500 | |
""" | |
# Create a Streamlit app | |
def main(): | |
st.title("Prompt to JSON Tool") | |
st.write("This tool generates JSON output based on the user's prompt.") | |
user_input = st.text_area("Enter your prompt here") | |
if st.button("Generate JSON"): | |
messages = [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": f"{delimiter}{user_input}{delimiter}"}, | |
] | |
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) | |
output_text = outputs[0]["generated_text"] | |
# Parse the relevant JSON information from the output text | |
json_output = output_text.split("Example1:")[-1].strip() | |
# Display the JSON output on the Streamlit app | |
st.write("JSON Output:") | |
st.write(json_output) | |
# Save the JSON output to a file | |
with open("output.json", "w") as f: | |
json.dump(json_output, f, indent=4) | |
st.write("JSON output saved to 'output.json'.") | |
if __name__ == "__main__": | |
main() | |