Expedit-SAM / app.py
kxqt's picture
init commit
2c50deb
raw
history blame
3.41 kB
import os
import torch
import numpy as np
import gradio as gr
from segment_anything import build_sam, SamAutomaticMaskGenerator
os.system(r'python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth')
hourglass_args = {
"baseline": {},
"1.2x faster": {
"use_hourglass": True,
"hourglass_clustering_location": 14,
"hourglass_num_cluster": 100,
},
"1.5x faster": {
"use_hourglass": True,
"hourglass_clustering_location": 6,
"hourglass_num_cluster": 81,
},
}
def predict(image, speed_mode):
mask_generator = SamAutomaticMaskGenerator(build_sam(checkpoint="sam_vit_h_4b8939.pth", hourglass_kwargs=hourglass_args[speed_mode]))
masks = mask_generator.generate(image)
if len(masks) == 0:
return image
sorted_masks = sorted(masks, key=(lambda x: x['area']), reverse=True)
img = np.ones(image.shape)
for mask in sorted_masks:
m = mask['segmentation']
color_mask = np.random.random((1, 1, 3))
img = img * (1 - m[..., None]) + color_mask * m[..., None]
image = ((image + img * 255) / 2).astype(np.uint8)
return image
description = """
# <center>Expedit-SAM (Expedite Segment Anything Model without any training)</center>
Github link: [Link](https://github.com/Expedit-LargeScale-Vision-Transformer/Expedit-SAM)
You can select the speed mode you want to use from the "Speed Mode" dropdown menu and click "Run" to segment the image you uploaded to the "Input Image" box.
"""
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
description += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
def main():
with gr.Blocks() as demo:
gr.Markdown(description)
with gr.Column():
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image")
speed_mode = gr.Dropdown(
choices=list(hourglass_args.keys()),
value="baseline",
label="Speed Mode",
multiselect=False,
)
with gr.Row():
run_btn = gr.Button(label="Run", id="run", value="Run")
clear_btn = gr.Button(label="Clear", id="clear", value="Clear")
output_image = gr.Image(label="Output Image")
gr.Examples(
examples=[
["./notebooks/images/dog.jpg"],
["notebooks/images/groceries.jpg"],
["notebooks/images/truck.jpg"],
],
inputs=[input_image],
outputs=[output_image],
fn=predict,
)
run_btn.click(
fn=predict,
inputs=[input_image, speed_mode],
outputs=output_image
)
clear_btn.click(
fn=lambda: [None, None],
inputs=None,
outputs=[input_image, output_image],
queue=False,
)
demo.queue()
demo.launch()
if __name__ == "__main__":
main()