File size: 3,806 Bytes
2c50deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de52eea
6837ba9
 
de52eea
 
6837ba9
2c50deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6837ba9
 
 
 
 
2c50deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9f473c
2c50deb
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import torch
import numpy as np

import gradio as gr

from segment_anything import build_sam, SamAutomaticMaskGenerator

os.system(r'python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth')

hourglass_args = {
    "baseline": {},
    "1.2x faster": {
        "use_hourglass": True,
        "hourglass_clustering_location": 14,
        "hourglass_num_cluster": 100,
    },
    "1.5x faster": {
        "use_hourglass": True,
        "hourglass_clustering_location": 6,
        "hourglass_num_cluster": 81,
    },
}

def predict(image, speed_mode, points_per_side):
    mask_generator = SamAutomaticMaskGenerator(
        build_sam(checkpoint="sam_vit_h_4b8939.pth", hourglass_kwargs=hourglass_args[speed_mode]), 
        points_per_side=points_per_side,
        points_per_batch=64 if points_per_side > 12 else points_per_side * points_per_side
    )
    masks = mask_generator.generate(image)

    if len(masks) == 0:
        return image
    sorted_masks = sorted(masks, key=(lambda x: x['area']), reverse=True)
    img = np.ones(image.shape)
    for mask in sorted_masks:
        m = mask['segmentation']
        color_mask = np.random.random((1, 1, 3))
        img = img * (1 - m[..., None]) + color_mask * m[..., None]

    image = ((image + img * 255) / 2).astype(np.uint8)
    return image

description = """
#  <center>Expedit-SAM (Expedite Segment Anything Model without any training)</center>
Github link: [Link](https://github.com/Expedit-LargeScale-Vision-Transformer/Expedit-SAM)
You can select the speed mode you want to use from the "Speed Mode" dropdown menu and click "Run" to segment the image you uploaded to the "Input Image" box.
"""
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
    description += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'


def main():
    with gr.Blocks() as demo:
        gr.Markdown(description)
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    input_image = gr.Image(label="Input Image")
                    points_per_side = gr.Dropdown(
                        choices=[4, 6, 8, 12, 16, 32],
                        value=12, 
                        label="Points per Side",
                    )
                    speed_mode = gr.Dropdown(
                        choices=list(hourglass_args.keys()),
                        value="baseline", 
                        label="Speed Mode",
                        multiselect=False,
                    )
                    with gr.Row():
                        run_btn = gr.Button(label="Run", id="run", value="Run")
                        clear_btn = gr.Button(label="Clear", id="clear", value="Clear")
                output_image = gr.Image(label="Output Image")
            gr.Examples(
                examples=[
                    ["./notebooks/images/dog.jpg"],
                    ["notebooks/images/groceries.jpg"],
                    ["notebooks/images/truck.jpg"],
                ],
                inputs=[input_image],
                outputs=[output_image],
                fn=predict,
            )
        
        run_btn.click(
            fn=predict, 
            inputs=[input_image, speed_mode, int(points_per_side)], 
            outputs=output_image
        )
        clear_btn.click(
            fn=lambda: [None, None], 
            inputs=None, 
            outputs=[input_image, output_image], 
            queue=False,
        )

    demo.queue()
    demo.launch()

if __name__ == "__main__":
    main()