Spaces:
Runtime error
Runtime error
File size: 15,578 Bytes
2c50deb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from typing import Optional, Tuple, Type
from .common import LayerNorm2d, MLPBlock
from .image_encoder import (
window_partition,
window_unpartition,
add_decomposed_rel_pos,
ImageEncoderViT,
Block,
Attention,
)
class TokenClusteringBlock(nn.Module):
def __init__(self, num_spixels=None, n_iters=5, temperture=0.05, window_size=7):
super().__init__()
if isinstance(num_spixels, tuple):
assert len(num_spixels) == 2
elif num_spixels is not None:
x = int(math.sqrt(num_spixels))
assert x * x == num_spixels
num_spixels = (x, x)
self.num_spixels = num_spixels
self.n_iters = n_iters
self.temperture = temperture
assert window_size % 2 == 1
self.r = window_size // 2
def calc_init_centroid(self, images, num_spixels_width, num_spixels_height):
"""
calculate initial superpixels
Args:
images: torch.Tensor
A Tensor of shape (B, C, H, W)
spixels_width: int
initial superpixel width
spixels_height: int
initial superpixel height
Return:
centroids: torch.Tensor
A Tensor of shape (B, C, H * W)
init_label_map: torch.Tensor
A Tensor of shape (B, H * W)
num_spixels_width: int
A number of superpixels in each column
num_spixels_height: int
A number of superpixels int each raw
"""
batchsize, channels, height, width = images.shape
device = images.device
centroids = torch.nn.functional.adaptive_avg_pool2d(
images, (num_spixels_height, num_spixels_width)
)
with torch.no_grad():
num_spixels = num_spixels_width * num_spixels_height
labels = (
torch.arange(num_spixels, device=device)
.reshape(1, 1, *centroids.shape[-2:])
.type_as(centroids)
)
init_label_map = torch.nn.functional.interpolate(
labels, size=(height, width), mode="nearest"
).type_as(centroids)
init_label_map = init_label_map.repeat(batchsize, 1, 1, 1)
init_label_map = init_label_map.reshape(batchsize, -1)
centroids = centroids.reshape(batchsize, channels, -1)
return centroids, init_label_map
def forward(self, pixel_features, num_spixels=None):
if num_spixels is None:
num_spixels = self.num_spixels
assert num_spixels is not None
else:
if isinstance(num_spixels, tuple):
assert len(num_spixels) == 2
else:
x = int(math.sqrt(num_spixels))
assert x * x == num_spixels
num_spixels = (x, x)
pixel_features = pixel_features.permute(0, 3, 1, 2)
num_spixels_height, num_spixels_width = num_spixels
num_spixels = num_spixels_width * num_spixels_height
spixel_features, init_label_map = self.calc_init_centroid(
pixel_features, num_spixels_width, num_spixels_height
)
device = init_label_map.device
spixels_number = torch.arange(num_spixels, device=device)[None, :, None]
relative_labels_widths = init_label_map[:, None] % num_spixels_width - spixels_number % num_spixels_width
relative_labels_heights = torch.div(init_label_map[:, None], num_spixels_width, rounding_mode='trunc') - torch.div(spixels_number, num_spixels_width, rounding_mode='trunc')
mask = torch.logical_and(torch.abs(relative_labels_widths) <= self.r, torch.abs(relative_labels_heights) <= self.r)
mask_dist = (~mask) * 1e16
pixel_features = pixel_features.reshape(*pixel_features.shape[:2], -1) # (B, C, L)
permuted_pixel_features = pixel_features.permute(0, 2, 1) # (B, L, C)
for _ in range(self.n_iters):
dist_matrix = self.pairwise_dist(pixel_features, spixel_features) # (B, L', L)
dist_matrix += mask_dist
affinity_matrix = (-dist_matrix * self.temperture).softmax(1)
spixel_features = torch.bmm(affinity_matrix.detach(), permuted_pixel_features)
spixel_features = spixel_features / affinity_matrix.detach().sum(2, keepdim=True).clamp_(min=1e-16)
spixel_features = spixel_features.permute(0, 2, 1)
dist_matrix = self.pairwise_dist(pixel_features, spixel_features)
hard_labels = torch.argmin(dist_matrix, dim=1)
B, C, _ = spixel_features.shape
spixel_features = spixel_features.permute(0, 2, 1).reshape(B, num_spixels_height, num_spixels_width, C)
return spixel_features, hard_labels
def pairwise_dist(self, f1, f2):
return ((f1 * f1).sum(dim=1).unsqueeze(1)
+ (f2 * f2).sum(dim=1).unsqueeze(2)
- 2 * torch.einsum("bcm, bcn -> bmn", f2, f1))
def extra_repr(self):
return f"num_spixels={self.num_spixels}, n_iters={self.n_iters}"
def naive_unpool(f_regions, region_indices):
_, _, C = f_regions.shape
N, L = region_indices.shape
index = region_indices.view(N, L, 1).expand(N, L, C)
result = f_regions.gather(1, index)
return result
class State:
def __init__(self, unpooling):
self.unpooling = unpooling
self.__updated = False
@property
def updated(self):
return self.__updated
def get(self, name, default=None):
return getattr(self, name, default)
def update_state(self, **states: dict):
self.__updated = True
for k, v in states.items():
setattr(self, k, v)
def call(self, input: torch.Tensor):
return self.unpooling(input, self)
class UnpoolingBase(nn.Module):
def forward(self, x, state: State):
if not state.updated:
return x, False
return self._forward(x, state)
def derive_unpooler(self):
return State(self)
class NaiveUnpooling(UnpoolingBase):
def _forward(self, x, state: State):
return naive_unpool(x, state.hard_labels), False
class TokenReconstructionBlock(UnpoolingBase):
def __init__(self, k=3, temperture=0.05):
super().__init__()
self.k = k
self.temperture = temperture
def _forward(self, x, state: State):
feat = state.feat_before_pooling
sfeat = state.feat_after_pooling
ds = (
(feat * feat).sum(dim=2).unsqueeze(2)
+ (sfeat * sfeat).sum(dim=2).unsqueeze(1)
- 2 * torch.einsum("bnc, bmc -> bnm", feat, sfeat)
) # distance between features and super-features
ds[ds < 0] = 0
weight = torch.exp(-self.temperture * ds)
if self.k >= 0:
topk, indices = torch.topk(weight, k=self.k, dim=2)
mink = torch.min(topk, dim=-1).values
mink = mink.unsqueeze(-1).repeat(1, 1, weight.shape[-1])
mask = torch.ge(weight, mink)
zero = Variable(torch.zeros_like(weight)).cuda()
attention = torch.where(mask, weight, zero)
attention = F.normalize(attention, dim=2)
ret = torch.einsum("bnm, bmc -> bnc", attention, x)
return ret, False
class HourglassImageEncoderViT(ImageEncoderViT):
def __init__(
self,
img_size: int = 1024,
patch_size: int = 16,
in_chans: int = 3,
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
out_chans: int = 256,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_abs_pos: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
global_attn_indexes: Tuple[int, ...] = (),
hourglass_clustering_location: int = -1,
hourglass_num_cluster: int = None,
hourglass_cluster_iters: int = 3,
hourglass_temperture: float = 0.1,
hourglass_cluster_window_size: int = 12,
hourglass_reconstruction_k: int = 36,
) -> None:
"""
Args:
img_size (int): Input image size.
patch_size (int): Patch size.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
depth (int): Depth of ViT.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_abs_pos (bool): If True, use absolute positional embeddings.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks.
global_attn_indexes (list): Indexes for blocks using global attention.
"""
super().__init__(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
depth=depth,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
out_chans=out_chans,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
act_layer=act_layer,
use_abs_pos=use_abs_pos,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=window_size,
global_attn_indexes=global_attn_indexes,
)
self.window_size = window_size
self.ws_new = int(math.sqrt(hourglass_num_cluster))
self.blocks = nn.ModuleList()
for i in range(depth):
block = HourglassBlock(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
act_layer=act_layer,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=(window_size if i < hourglass_clustering_location else self.ws_new) if i not in global_attn_indexes else 0,
window_size_ckpt=window_size,
input_size=(img_size // patch_size, img_size // patch_size),
)
self.blocks.append(block)
self.clustering_location = hourglass_clustering_location
self.token_clustering_block = TokenClusteringBlock(
num_spixels=hourglass_num_cluster,
n_iters=hourglass_cluster_iters,
temperture=hourglass_temperture,
window_size=hourglass_cluster_window_size,
)
self.token_reconstruction_block = TokenReconstructionBlock(
k=hourglass_reconstruction_k,
temperture=hourglass_temperture,
)
def cluster(self, x, reconstructer):
# x: B, H, W, C
H, W = x.shape[1:3]
x, pad_hw = window_partition(x, self.window_size) # B*Nw, WH, WW, C
Bnw, _, _, C = x.shape
reconstructer.update_state(
feat_before_pooling=x.view(-1, self.window_size * self.window_size, C)
)
x, hard_labels = self.token_clustering_block(x) # B*H*W, Wh, Ww, C
reconstructer.update_state(hard_labels=hard_labels)
reconstructer.update_state(feat_after_pooling=x.view(Bnw, -1, C))
# merge window
# Reverse window partition
h = pad_hw[0] // self.window_size * x.shape[1]
w = pad_hw[1] // self.window_size * x.shape[2]
x = window_unpartition(x, self.ws_new, (h, w), (h, w))
# out: B, h, w, C
return x, pad_hw
def reconstruct(self, x, H, W, recontructer, pad_hw):
# x: B, h, w, C
x, _ = window_partition(x, self.ws_new) # B*Nw, Wh, Ww, C
Bnw, _, _, C = x.shape
x = x.view(Bnw, -1, C)
x, _ = recontructer.call(x) # B*Nw, WH*WW, C
# merge windows
x = x.view(-1, self.window_size, self.window_size, C)
x = window_unpartition(x, self.window_size, pad_hw, (H, W)) # B, H, W, C
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.patch_embed(x)
if self.pos_embed is not None:
x = x + self.pos_embed
H, W = x.shape[1], x.shape[2]
reconstructer = self.token_reconstruction_block.derive_unpooler()
reconstructer.update_state(hw_shape=(H, W))
for i, blk in enumerate(self.blocks):
if i == self.clustering_location:
x, pad_hw = self.cluster(x, reconstructer)
x = blk(x)
x = self.reconstruct(x, H, W, reconstructer, pad_hw)
x = self.neck(x.permute(0, 3, 1, 2))
return x
class HourglassBlock(Block):
"""Transformer blocks with support of window attention and residual propagation blocks"""
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
input_size: Optional[Tuple[int, int]] = None,
window_size_ckpt: int = 0,
) -> None:
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks. If it equals 0, then
use global attention.
input_size (int or None): Input resolution for calculating the relative positional
parameter size.
"""
super(HourglassBlock, self).__init__(
dim=dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
act_layer=act_layer,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=window_size,
input_size=input_size,
)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
input_size=input_size if window_size == 0 else (window_size_ckpt, window_size_ckpt),
)
|