File size: 6,390 Bytes
2c50deb
1f28384
2c50deb
 
 
 
 
 
1f28384
 
 
 
 
 
 
2c50deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f28384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de52eea
c46b2fc
6837ba9
1f28384
de52eea
 
6837ba9
1f28384
 
 
 
 
 
2c50deb
 
 
 
 
 
 
 
 
 
 
1f28384
2c50deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6837ba9
 
 
 
 
2c50deb
 
 
 
 
 
 
 
 
1f28384
 
 
2c50deb
 
 
 
 
 
 
 
 
 
 
 
 
c46b2fc
1f28384
2c50deb
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import time
import torch
import numpy as np

import gradio as gr

from segment_anything import build_sam, SamAutomaticMaskGenerator
from segment_anything.utils.amg import (
    batch_iterator,
    MaskData,
    calculate_stability_score,
    batched_mask_to_box,
    is_box_near_crop_edge,
)

os.system(r'python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth')

hourglass_args = {
    "baseline": {},
    "1.2x faster": {
        "use_hourglass": True,
        "hourglass_clustering_location": 14,
        "hourglass_num_cluster": 100,
    },
    "1.5x faster": {
        "use_hourglass": True,
        "hourglass_clustering_location": 6,
        "hourglass_num_cluster": 81,
    },
}

def generate_mask(image, generator: SamAutomaticMaskGenerator):
    generator.predictor.set_image(image)

    image_size = image.shape[:2]
    points_scale = np.array(image_size)[None, ::-1]
    points_for_image = generator.point_grids[0] * points_scale
    for (points,) in batch_iterator(generator.points_per_batch, points_for_image):
        transformed_points = generator.predictor.transform.apply_coords(points, image_size)
        in_points = torch.as_tensor(transformed_points, device=generator.predictor.device)
        in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
        masks, iou_preds, _ = generator.predictor.predict_torch(
            in_points[:, None, :],
            in_labels[:, None],
            multimask_output=True,
            return_logits=True,
        )

        # Serialize predictions and store in MaskData
        data = MaskData(
            masks=masks.flatten(0, 1),
            iou_preds=iou_preds.flatten(0, 1),
            points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
        )
        del masks

        # Filter by predicted IoU
        if generator.pred_iou_thresh > 0.0:
            keep_mask = data["iou_preds"] > generator.pred_iou_thresh
            data.filter(keep_mask)

        # Calculate stability score
        data["stability_score"] = calculate_stability_score(
            data["masks"], generator.predictor.model.mask_threshold, generator.stability_score_offset
        )
        if generator.stability_score_thresh > 0.0:
            keep_mask = data["stability_score"] >= generator.stability_score_thresh
            data.filter(keep_mask)

        # Threshold masks and calculate boxes
        data["masks"] = data["masks"] > generator.predictor.model.mask_threshold
    
    # Write mask records
    curr_anns = []
    for idx in range(len(data["masks"])):
        ann = {
            "segmentation": data["masks"][idx].numpy(),
            "area": data["masks"][idx].sum().item(),
        }
        curr_anns.append(ann)

    return curr_anns


def predict(image, speed_mode, points_per_side):
    points_per_side = int(points_per_side)
    mask_generator = SamAutomaticMaskGenerator(
        build_sam(checkpoint="sam_vit_h_4b8939.pth", **hourglass_args[speed_mode]), 
        points_per_side=points_per_side,
        points_per_batch=64 if points_per_side > 12 else points_per_side * points_per_side
    )
    start = time.perf_counter()
    with torch.no_grad():
        # masks = mask_generator.generate(image)
        masks = generate_mask(image, mask_generator)
    eta = time.perf_counter() - start
    eta_text = f"Time of generation: {eta:.2f} seconds"

    if len(masks) == 0:
        return image
    sorted_masks = sorted(masks, key=(lambda x: x['area']), reverse=True)
    img = np.ones(image.shape)
    for mask in sorted_masks:
        m = mask['segmentation']
        color_mask = np.random.random((1, 1, 3))
        img = img * (1 - m[..., None]) + color_mask * m[..., None]

    image = ((image + img * 255) / 2).astype(np.uint8)
    return image, eta_text

description = """
#  <center>Expedit-SAM (Expedite Segment Anything Model without any training)</center>
Github link: [Link](https://github.com/Expedit-LargeScale-Vision-Transformer/Expedit-SAM)
You can select the speed mode you want to use from the "Speed Mode" dropdown menu and click "Run" to segment the image you uploaded to the "Input Image" box.
"""
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
    description += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'


def main():
    with gr.Blocks() as demo:
        gr.Markdown(description)
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    input_image = gr.Image(label="Input Image")
                    points_per_side = gr.Dropdown(
                        choices=[4, 6, 8, 12, 16, 32],
                        value=12, 
                        label="Points per Side",
                    )
                    speed_mode = gr.Dropdown(
                        choices=list(hourglass_args.keys()),
                        value="baseline", 
                        label="Speed Mode",
                        multiselect=False,
                    )
                    with gr.Row():
                        run_btn = gr.Button(label="Run", id="run", value="Run")
                        clear_btn = gr.Button(label="Clear", id="clear", value="Clear")
                with gr.Column():
                    output_image = gr.Image(label="Output Image")
                    eta_label = gr.Label(label="ETA")
            gr.Examples(
                examples=[
                    ["./notebooks/images/dog.jpg"],
                    ["notebooks/images/groceries.jpg"],
                    ["notebooks/images/truck.jpg"],
                ],
                inputs=[input_image],
                outputs=[output_image],
                fn=predict,
            )
        
        run_btn.click(
            fn=predict, 
            inputs=[input_image, speed_mode, points_per_side], 
            outputs=[output_image, eta_label]
        )
        clear_btn.click(
            fn=lambda: [None, None], 
            inputs=None, 
            outputs=[input_image, output_image], 
            queue=False,
        )

    demo.queue()
    demo.launch()

if __name__ == "__main__":
    main()