Spaces:
Runtime error
Runtime error
File size: 10,592 Bytes
2c50deb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import cv2 # type: ignore
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
from segment_anything.utils.amg import (
batch_iterator,
generate_crop_boxes,
)
import argparse
import json
import os
from typing import Any, Dict, List
import numpy as np
import matplotlib.pyplot as plt
import time
import torch
from tqdm import tqdm
parser = argparse.ArgumentParser(
description=(
"Runs automatic mask generation on an input image or directory of images, "
"and outputs masks as either PNGs or COCO-style RLEs. Requires open-cv, "
"as well as pycocotools if saving in RLE format."
)
)
parser.add_argument(
"--input",
type=str,
required=True,
help="Path to either a single input image or folder of images.",
)
parser.add_argument(
"--output",
type=str,
required=True,
help=(
"Path to the directory where masks will be output. Output will be either a folder "
"of PNGs per image or a single json with COCO-style masks."
),
)
parser.add_argument(
"--model-type",
type=str,
default="default",
help="The type of model to load, in ['default', 'vit_l', 'vit_b']",
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="The path to the SAM checkpoint to use for mask generation.",
)
parser.add_argument("--device", type=str, default="cuda", help="The device to run generation on.")
parser.add_argument(
"--convert-to-rle",
action="store_true",
help=(
"Save masks as COCO RLEs in a single json instead of as a folder of PNGs. "
"Requires pycocotools."
),
)
amg_settings = parser.add_argument_group("AMG Settings")
amg_settings.add_argument(
"--points-per-side",
type=int,
default=None,
help="Generate masks by sampling a grid over the image with this many points to a side.",
)
amg_settings.add_argument(
"--points-per-batch",
type=int,
default=None,
help="How many input points to process simultaneously in one batch.",
)
amg_settings.add_argument(
"--pred-iou-thresh",
type=float,
default=None,
help="Exclude masks with a predicted score from the model that is lower than this threshold.",
)
amg_settings.add_argument(
"--stability-score-thresh",
type=float,
default=None,
help="Exclude masks with a stability score lower than this threshold.",
)
amg_settings.add_argument(
"--stability-score-offset",
type=float,
default=None,
help="Larger values perturb the mask more when measuring stability score.",
)
amg_settings.add_argument(
"--box-nms-thresh",
type=float,
default=None,
help="The overlap threshold for excluding a duplicate mask.",
)
amg_settings.add_argument(
"--crop-n-layers",
type=int,
default=None,
help=(
"If >0, mask generation is run on smaller crops of the image to generate more masks. "
"The value sets how many different scales to crop at."
),
)
amg_settings.add_argument(
"--crop-nms-thresh",
type=float,
default=None,
help="The overlap threshold for excluding duplicate masks across different crops.",
)
amg_settings.add_argument(
"--crop-overlap-ratio",
type=int,
default=None,
help="Larger numbers mean image crops will overlap more.",
)
amg_settings.add_argument(
"--crop-n-points-downscale-factor",
type=int,
default=None,
help="The number of points-per-side in each layer of crop is reduced by this factor.",
)
amg_settings.add_argument(
"--min-mask-region-area",
type=int,
default=None,
help=(
"Disconnected mask regions or holes with area smaller than this value "
"in pixels are removed by postprocessing."
),
)
# add hourglass settings
amg_settings.add_argument(
"--use_hourglass",
action="store_true",
help="Use hourglass method to expedite mask generation.",
)
amg_settings.add_argument(
"--hourglass_clustering_location",
type=int,
default=6,
help="location of clustering, ranging from [0, num of layers of transformer)"
)
amg_settings.add_argument(
"--hourglass_num_cluster",
type=int,
default=100,
help="num of clusters, no more than total number of features"
)
amg_settings.add_argument(
"--hourglass_cluster_iters",
type=int,
default=5,
help="num of iterations in clustering"
)
amg_settings.add_argument(
"--hourglass_temperture",
type=float,
default=5e-3,
help="temperture in clustering and reconstruction"
)
amg_settings.add_argument(
"--hourglass_cluster_window_size",
type=int,
default=5,
help="window size in clustering"
)
amg_settings.add_argument(
"--hourglass_reconstruction_k",
type=int,
default=20,
help="k in token reconstruction layer of hourglass vit"
)
def write_masks_to_folder(masks: List[Dict[str, Any]], path: str) -> None:
header = "id,area,bbox_x0,bbox_y0,bbox_w,bbox_h,point_input_x,point_input_y,predicted_iou,stability_score,crop_box_x0,crop_box_y0,crop_box_w,crop_box_h" # noqa
metadata = [header]
for i, mask_data in enumerate(masks):
mask = mask_data["segmentation"]
filename = f"{i}.png"
cv2.imwrite(os.path.join(path, filename), mask * 255)
mask_metadata = [
str(i),
str(mask_data["area"]),
*[str(x) for x in mask_data["bbox"]],
*[str(x) for x in mask_data["point_coords"][0]],
str(mask_data["predicted_iou"]),
str(mask_data["stability_score"]),
*[str(x) for x in mask_data["crop_box"]],
]
row = ",".join(mask_metadata)
metadata.append(row)
metadata_path = os.path.join(path, "metadata.csv")
with open(metadata_path, "w") as f:
f.write("\n".join(metadata))
return
def get_amg_kwargs(args):
amg_kwargs = {
"points_per_side": args.points_per_side,
"points_per_batch": args.points_per_batch,
"pred_iou_thresh": args.pred_iou_thresh,
"stability_score_thresh": args.stability_score_thresh,
"stability_score_offset": args.stability_score_offset,
"box_nms_thresh": args.box_nms_thresh,
"crop_n_layers": args.crop_n_layers,
"crop_nms_thresh": args.crop_nms_thresh,
"crop_overlap_ratio": args.crop_overlap_ratio,
"crop_n_points_downscale_factor": args.crop_n_points_downscale_factor,
"min_mask_region_area": args.min_mask_region_area,
}
amg_kwargs = {k: v for k, v in amg_kwargs.items() if v is not None}
return amg_kwargs
def get_hourglass_kwargs(args):
hourglass_kwargs = {
"use_hourglass": args.use_hourglass,
"hourglass_clustering_location": args.hourglass_clustering_location,
"hourglass_num_cluster": args.hourglass_num_cluster,
"hourglass_cluster_iters": args.hourglass_cluster_iters,
"hourglass_temperture": args.hourglass_temperture,
"hourglass_cluster_window_size": args.hourglass_cluster_window_size,
"hourglass_reconstruction_k": args.hourglass_reconstruction_k,
}
hourglass_kwargs = {k: v for k, v in hourglass_kwargs.items() if v is not None}
return hourglass_kwargs
def show_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
for ann in sorted_anns:
m = ann['segmentation']
img = np.ones((m.shape[0], m.shape[1], 3))
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
img[:,:,i] = color_mask[i]
ax.imshow(np.dstack((img, m*0.35)))
def main(args: argparse.Namespace) -> None:
print("Loading model...")
hourglass_kwargs = get_hourglass_kwargs(args)
sam = sam_model_registry[args.model_type](checkpoint=args.checkpoint, **hourglass_kwargs)
_ = sam.to(device=args.device)
output_mode = "coco_rle" if args.convert_to_rle else "binary_mask"
amg_kwargs = get_amg_kwargs(args)
generator = SamAutomaticMaskGenerator(sam, output_mode=output_mode, **amg_kwargs)
total_time = 0
warmup = 50
num_samples = 200
for i in tqdm(range(num_samples)):
image = np.random.randint(0, 255, size=(1024, 1024, 3), dtype=np.uint8)
start = time.perf_counter()
# masks = generator.generate(image)
with torch.no_grad():
# mask_data = generator._generate_masks(image)
orig_size = image.shape[:2]
crop_boxes, layer_idxs = generate_crop_boxes(
orig_size, generator.crop_n_layers, generator.crop_overlap_ratio
)
# Iterate over image crops
for crop_box, crop_layer_idx in zip(crop_boxes, layer_idxs):
# crop_data = generator._process_crop(image, crop_box, layer_idx, orig_size)
x0, y0, x1, y1 = crop_box
cropped_im = image[y0:y1, x0:x1, :]
cropped_im_size = cropped_im.shape[:2]
generator.predictor.set_image(cropped_im)
points_scale = np.array(cropped_im_size)[None, ::-1]
points_for_image = generator.point_grids[crop_layer_idx] * points_scale
for (points,) in batch_iterator(generator.points_per_batch, points_for_image):
# batch_data = generator._process_batch(points, cropped_im_size, crop_box, orig_size)
transformed_points = generator.predictor.transform.apply_coords(points, cropped_im_size)
in_points = torch.as_tensor(transformed_points, device=generator.predictor.device)
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
masks, iou_preds, _ = generator.predictor.predict_torch(
in_points[:, None, :],
in_labels[:, None],
multimask_output=True,
return_logits=True,
)
del masks
del iou_preds
eta = time.perf_counter() - start
if i >= warmup:
total_time += eta
print("Done!")
print(f"Average time per image: {total_time / (num_samples - warmup)} seconds")
if __name__ == "__main__":
args = parser.parse_args()
main(args)
|