Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# Dummy optimizer for visualizing pairs | |
# -------------------------------------------------------- | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import cv2 | |
from dust3r.cloud_opt.base_opt import BasePCOptimizer | |
from dust3r.utils.geometry import inv, geotrf, depthmap_to_absolute_camera_coordinates | |
from dust3r.cloud_opt.commons import edge_str | |
from dust3r.post_process import estimate_focal_knowing_depth | |
class PairViewer (BasePCOptimizer): | |
""" | |
This a Dummy Optimizer. | |
To use only when the goal is to visualize the results for a pair of images (with is_symmetrized) | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
assert self.is_symmetrized and self.n_edges == 2 | |
self.has_im_poses = True | |
# compute all parameters directly from raw input | |
self.focals = [] | |
self.pp = [] | |
rel_poses = [] | |
confs = [] | |
for i in range(self.n_imgs): | |
conf = float(self.conf_i[edge_str(i, 1-i)].mean() * self.conf_j[edge_str(i, 1-i)].mean()) | |
if self.verbose: | |
print(f' - {conf=:.3} for edge {i}-{1-i}') | |
confs.append(conf) | |
H, W = self.imshapes[i] | |
pts3d = self.pred_i[edge_str(i, 1-i)] | |
pp = torch.tensor((W/2, H/2)) | |
focal = float(estimate_focal_knowing_depth(pts3d[None], pp, focal_mode='weiszfeld')) | |
self.focals.append(focal) | |
self.pp.append(pp) | |
# estimate the pose of pts1 in image 2 | |
pixels = np.mgrid[:W, :H].T.astype(np.float32) | |
pts3d = self.pred_j[edge_str(1-i, i)].numpy() | |
assert pts3d.shape[:2] == (H, W) | |
msk = self.get_masks()[i].numpy() | |
K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)]) | |
try: | |
res = cv2.solvePnPRansac(pts3d[msk], pixels[msk], K, None, | |
iterationsCount=100, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP) | |
success, R, T, inliers = res | |
assert success | |
R = cv2.Rodrigues(R)[0] # world to cam | |
pose = inv(np.r_[np.c_[R, T], [(0, 0, 0, 1)]]) # cam to world | |
except: | |
pose = np.eye(4) | |
rel_poses.append(torch.from_numpy(pose.astype(np.float32))) | |
# let's use the pair with the most confidence | |
if confs[0] > confs[1]: | |
# ptcloud is expressed in camera1 | |
self.im_poses = [torch.eye(4), rel_poses[1]] # I, cam2-to-cam1 | |
self.depth = [self.pred_i['0_1'][..., 2], geotrf(inv(rel_poses[1]), self.pred_j['0_1'])[..., 2]] | |
else: | |
# ptcloud is expressed in camera2 | |
self.im_poses = [rel_poses[0], torch.eye(4)] # I, cam1-to-cam2 | |
self.depth = [geotrf(inv(rel_poses[0]), self.pred_j['1_0'])[..., 2], self.pred_i['1_0'][..., 2]] | |
self.im_poses = nn.Parameter(torch.stack(self.im_poses, dim=0), requires_grad=False) | |
if self.same_focals: | |
self.focals = nn.Parameter(torch.tensor([torch.tensor(self.focals).mean()]), requires_grad = False) | |
else: | |
self.focals = nn.Parameter(torch.tensor(self.focals), requires_grad=False) | |
self.pp = nn.Parameter(torch.stack(self.pp, dim=0), requires_grad=False) | |
self.depth = nn.ParameterList(self.depth) | |
for p in self.parameters(): | |
p.requires_grad = False | |
def _set_depthmap(self, idx, depth, force=False): | |
if self.verbose: | |
print('_set_depthmap is ignored in PairViewer') | |
return | |
def get_depthmaps(self, raw=False): | |
depth = [d.to(self.device) for d in self.depth] | |
return depth | |
def _set_focal(self, idx, focal, force=False): | |
self.focals[idx] = focal | |
def get_focals(self): | |
return self.focals | |
def get_known_focal_mask(self): | |
return torch.tensor([not (p.requires_grad) for p in self.focals]) | |
def get_principal_points(self): | |
return self.pp | |
def get_intrinsics(self): | |
focals = self.get_focals() | |
pps = self.get_principal_points() | |
K = torch.zeros((len(focals), 3, 3), device=self.device) | |
for i in range(len(focals)): | |
K[i, 0, 0] = K[i, 1, 1] = focals[i] | |
K[i, :2, 2] = pps[i] | |
K[i, 2, 2] = 1 | |
return K | |
def get_im_poses(self): | |
return self.im_poses | |
def depth_to_pts3d(self): | |
pts3d = [] | |
for i, (d, im_pose) in enumerate(zip(self.depth, self.get_im_poses())): | |
if self.same_focals: | |
intrinsic = self.get_intrinsics()[0] | |
else: | |
intrinsic = self.get_intrinsics()[i] | |
pts, _ = depthmap_to_absolute_camera_coordinates(d.cpu().numpy(), | |
intrinsic.cpu().numpy(), | |
im_pose.cpu().numpy()) | |
pts3d.append(torch.from_numpy(pts).to(device=self.device)) | |
return pts3d | |
def forward(self): | |
return float('nan') | |