EscherNet / dust3r /cloud_opt /pair_viewer.py
kxhit
update
5f093a6
raw
history blame
5.35 kB
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Dummy optimizer for visualizing pairs
# --------------------------------------------------------
import numpy as np
import torch
import torch.nn as nn
import cv2
from dust3r.cloud_opt.base_opt import BasePCOptimizer
from dust3r.utils.geometry import inv, geotrf, depthmap_to_absolute_camera_coordinates
from dust3r.cloud_opt.commons import edge_str
from dust3r.post_process import estimate_focal_knowing_depth
class PairViewer (BasePCOptimizer):
"""
This a Dummy Optimizer.
To use only when the goal is to visualize the results for a pair of images (with is_symmetrized)
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
assert self.is_symmetrized and self.n_edges == 2
self.has_im_poses = True
# compute all parameters directly from raw input
self.focals = []
self.pp = []
rel_poses = []
confs = []
for i in range(self.n_imgs):
conf = float(self.conf_i[edge_str(i, 1-i)].mean() * self.conf_j[edge_str(i, 1-i)].mean())
if self.verbose:
print(f' - {conf=:.3} for edge {i}-{1-i}')
confs.append(conf)
H, W = self.imshapes[i]
pts3d = self.pred_i[edge_str(i, 1-i)]
pp = torch.tensor((W/2, H/2))
focal = float(estimate_focal_knowing_depth(pts3d[None], pp, focal_mode='weiszfeld'))
self.focals.append(focal)
self.pp.append(pp)
# estimate the pose of pts1 in image 2
pixels = np.mgrid[:W, :H].T.astype(np.float32)
pts3d = self.pred_j[edge_str(1-i, i)].numpy()
assert pts3d.shape[:2] == (H, W)
msk = self.get_masks()[i].numpy()
K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)])
try:
res = cv2.solvePnPRansac(pts3d[msk], pixels[msk], K, None,
iterationsCount=100, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP)
success, R, T, inliers = res
assert success
R = cv2.Rodrigues(R)[0] # world to cam
pose = inv(np.r_[np.c_[R, T], [(0, 0, 0, 1)]]) # cam to world
except:
pose = np.eye(4)
rel_poses.append(torch.from_numpy(pose.astype(np.float32)))
# let's use the pair with the most confidence
if confs[0] > confs[1]:
# ptcloud is expressed in camera1
self.im_poses = [torch.eye(4), rel_poses[1]] # I, cam2-to-cam1
self.depth = [self.pred_i['0_1'][..., 2], geotrf(inv(rel_poses[1]), self.pred_j['0_1'])[..., 2]]
else:
# ptcloud is expressed in camera2
self.im_poses = [rel_poses[0], torch.eye(4)] # I, cam1-to-cam2
self.depth = [geotrf(inv(rel_poses[0]), self.pred_j['1_0'])[..., 2], self.pred_i['1_0'][..., 2]]
self.im_poses = nn.Parameter(torch.stack(self.im_poses, dim=0), requires_grad=False)
if self.same_focals:
self.focals = nn.Parameter(torch.tensor([torch.tensor(self.focals).mean()]), requires_grad = False)
else:
self.focals = nn.Parameter(torch.tensor(self.focals), requires_grad=False)
self.pp = nn.Parameter(torch.stack(self.pp, dim=0), requires_grad=False)
self.depth = nn.ParameterList(self.depth)
for p in self.parameters():
p.requires_grad = False
def _set_depthmap(self, idx, depth, force=False):
if self.verbose:
print('_set_depthmap is ignored in PairViewer')
return
def get_depthmaps(self, raw=False):
depth = [d.to(self.device) for d in self.depth]
return depth
def _set_focal(self, idx, focal, force=False):
self.focals[idx] = focal
def get_focals(self):
return self.focals
def get_known_focal_mask(self):
return torch.tensor([not (p.requires_grad) for p in self.focals])
def get_principal_points(self):
return self.pp
def get_intrinsics(self):
focals = self.get_focals()
pps = self.get_principal_points()
K = torch.zeros((len(focals), 3, 3), device=self.device)
for i in range(len(focals)):
K[i, 0, 0] = K[i, 1, 1] = focals[i]
K[i, :2, 2] = pps[i]
K[i, 2, 2] = 1
return K
def get_im_poses(self):
return self.im_poses
def depth_to_pts3d(self):
pts3d = []
for i, (d, im_pose) in enumerate(zip(self.depth, self.get_im_poses())):
if self.same_focals:
intrinsic = self.get_intrinsics()[0]
else:
intrinsic = self.get_intrinsics()[i]
pts, _ = depthmap_to_absolute_camera_coordinates(d.cpu().numpy(),
intrinsic.cpu().numpy(),
im_pose.cpu().numpy())
pts3d.append(torch.from_numpy(pts).to(device=self.device))
return pts3d
def forward(self):
return float('nan')