kxhit
pickle get_conf_trf
6cc584b
raw
history blame
2.82 kB
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# utility functions for global alignment
# --------------------------------------------------------
import xmlrpc.client
import torch
import torch.nn as nn
import numpy as np
def edge_str(i, j):
return f'{i}_{j}'
def i_j_ij(ij):
return edge_str(*ij), ij
def edge_conf(conf_i, conf_j, edge):
return float(conf_i[edge].mean() * conf_j[edge].mean())
def compute_edge_scores(edges, conf_i, conf_j):
return {(i, j): edge_conf(conf_i, conf_j, e) for e, (i, j) in edges}
def NoGradParamDict(x):
assert isinstance(x, dict)
return nn.ParameterDict(x).requires_grad_(False)
def get_imshapes(edges, pred_i, pred_j):
n_imgs = max(max(e) for e in edges) + 1
imshapes = [None] * n_imgs
for e, (i, j) in enumerate(edges):
shape_i = tuple(pred_i[e].shape[0:2])
shape_j = tuple(pred_j[e].shape[0:2])
if imshapes[i]:
assert imshapes[i] == shape_i, f'incorrect shape for image {i}'
if imshapes[j]:
assert imshapes[j] == shape_j, f'incorrect shape for image {j}'
imshapes[i] = shape_i
imshapes[j] = shape_j
return imshapes
# def get_conf_trf(mode):
# if mode == 'log':
# def conf_trf(x): return x.log()
# elif mode == 'sqrt':
# def conf_trf(x): return x.sqrt()
# elif mode == 'm1':
# def conf_trf(x): return x-1
# elif mode in ('id', 'none'):
# def conf_trf(x): return x
# else:
# raise ValueError(f'bad mode for {mode=}')
# return conf_trf
def conf_trf_log(x):
return x.log()
def conf_trf_sqrt(x):
return x.sqrt()
def conf_trf_m1(x):
return x - 1
def conf_trf_id(x):
return x
# Mapping of modes to their corresponding functions
conf_trf_map = {
'log': conf_trf_log,
'sqrt': conf_trf_sqrt,
'm1': conf_trf_m1,
'id': conf_trf_id,
'none': conf_trf_id
}
def get_conf_trf(mode):
if mode not in conf_trf_map:
raise ValueError(f'bad mode for {mode=}')
return conf_trf_map[mode]
def l2_dist(a, b, weight):
return ((a - b).square().sum(dim=-1) * weight)
def l1_dist(a, b, weight):
return ((a - b).norm(dim=-1) * weight)
ALL_DISTS = dict(l1=l1_dist, l2=l2_dist)
def signed_log1p(x):
sign = torch.sign(x)
return sign * torch.log1p(torch.abs(x))
def signed_expm1(x):
sign = torch.sign(x)
return sign * torch.expm1(torch.abs(x))
def cosine_schedule(t, lr_start, lr_end):
assert 0 <= t <= 1
return lr_end + (lr_start - lr_end) * (1+np.cos(t * np.pi))/2
def linear_schedule(t, lr_start, lr_end):
assert 0 <= t <= 1
return lr_start + (lr_end - lr_start) * t