Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,234 Bytes
e371ddd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# utilitary functions about images (loading/converting...)
# --------------------------------------------------------
import os
import torch
import numpy as np
import PIL.Image
from PIL.ImageOps import exif_transpose
import torchvision.transforms as tvf
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2 # noqa
import rembg
rembg_session = rembg.new_session()
import time
from PIL import Image
from rembg import remove
from segment_anything import sam_model_registry, SamPredictor
def sam_init():
sam_checkpoint = os.path.join("./sam_pt/sam_vit_h_4b8939.pth")
if os.path.exists(sam_checkpoint) is False:
os.system("wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth -P ./sam_pt/")
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{0 if torch.cuda.is_available() else 'cpu'}")
predictor = SamPredictor(sam)
return predictor
def sam_segment(predictor, input_image, *bbox_coords):
bbox = np.array(bbox_coords)
image = np.asarray(input_image)
start_time = time.time()
predictor.set_image(image)
masks_bbox, scores_bbox, logits_bbox = predictor.predict(
box=bbox,
multimask_output=True
)
print(f"SAM Time: {time.time() - start_time:.3f}s")
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
out_image[:, :, :3] = image
out_image_bbox = out_image.copy()
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
torch.cuda.empty_cache()
return Image.fromarray(out_image_bbox, mode='RGBA')
predictor = sam_init()
try:
from pillow_heif import register_heif_opener # noqa
register_heif_opener()
heif_support_enabled = True
except ImportError:
heif_support_enabled = False
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
def imread_cv2(path, options=cv2.IMREAD_COLOR):
""" Open an image or a depthmap with opencv-python.
"""
if path.endswith(('.exr', 'EXR')):
options = cv2.IMREAD_ANYDEPTH
img = cv2.imread(path, options)
if img is None:
raise IOError(f'Could not load image={path} with {options=}')
if img.ndim == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def rgb(ftensor, true_shape=None):
if isinstance(ftensor, list):
return [rgb(x, true_shape=true_shape) for x in ftensor]
if isinstance(ftensor, torch.Tensor):
ftensor = ftensor.detach().cpu().numpy() # H,W,3
if ftensor.ndim == 3 and ftensor.shape[0] == 3:
ftensor = ftensor.transpose(1, 2, 0)
elif ftensor.ndim == 4 and ftensor.shape[1] == 3:
ftensor = ftensor.transpose(0, 2, 3, 1)
if true_shape is not None:
H, W = true_shape
ftensor = ftensor[:H, :W]
if ftensor.dtype == np.uint8:
img = np.float32(ftensor) / 255
else:
img = (ftensor * 0.5) + 0.5
return img.clip(min=0, max=1)
def _resize_pil_image(img, long_edge_size):
S = max(img.size)
if S > long_edge_size:
interp = PIL.Image.LANCZOS
elif S <= long_edge_size:
interp = PIL.Image.BICUBIC
new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size)
return img.resize(new_size, interp)
def load_images(folder_or_list, size, square_ok=False, verbose=True, do_remove_background=True, rembg_session=None):
""" open and convert all images in a list or folder to proper input format for DUSt3R
"""
if isinstance(folder_or_list, str):
if verbose:
print(f'>> Loading images from {folder_or_list}')
root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))
elif isinstance(folder_or_list, list):
if verbose:
print(f'>> Loading a list of {len(folder_or_list)} images')
root, folder_content = '', folder_or_list
else:
raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})')
supported_images_extensions = ['.jpg', '.jpeg', '.png']
if heif_support_enabled:
supported_images_extensions += ['.heic', '.heif']
supported_images_extensions = tuple(supported_images_extensions)
imgs = []
imgs_rgba = []
for path in folder_content:
if not path.lower().endswith(supported_images_extensions):
continue
img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert('RGB')
# remove background if needed
if do_remove_background:
# if rembg_session is None:
# rembg_session = rembg.new_session()
# image = rembg.remove(img, session=rembg_session)
# foreground = np.array(image)[..., -1] > 127
image_nobg = remove(img, alpha_matting=True, session=rembg_session)
arr = np.asarray(image_nobg)[:, :, -1]
x_nonzero = np.nonzero(arr.sum(axis=0))
y_nonzero = np.nonzero(arr.sum(axis=1))
x_min = int(x_nonzero[0].min())
y_min = int(y_nonzero[0].min())
x_max = int(x_nonzero[0].max())
y_max = int(y_nonzero[0].max())
input_image = sam_segment(predictor, img.convert('RGB'), x_min, y_min, x_max, y_max)
foreground = np.array(input_image)[..., -1] > 127
else:
foreground = img[..., -1] > 127
W1, H1 = img.size
if size == 224:
# resize short side to 224 (then crop)
img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1)))
# resize foreground mask
foreground = cv2.resize(foreground.astype(np.uint8), img.size, interpolation=cv2.INTER_NEAREST)
else:
# resize long side to 512
img = _resize_pil_image(img, size)
# resize foreground mask
foreground = cv2.resize(foreground.astype(np.uint8), img.size, interpolation=cv2.INTER_NEAREST)
W, H = img.size
cx, cy = W//2, H//2
if size == 224:
half = min(cx, cy)
img = img.crop((cx-half, cy-half, cx+half, cy+half))
# foreground crop
foreground = foreground[cy-half:cy+half, cx-half:cx+half]
else:
halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8
if not (square_ok) and W == H:
halfh = 3*halfw/4
img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh))
# foreground crop
foreground = foreground[cy-halfh:cy+halfh, cx-halfw:cx+halfw]
W2, H2 = img.size
if verbose:
print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}')
imgs.append(dict(img=ImgNorm(img)[None], true_shape=np.int32(
[img.size[::-1]]), idx=len(imgs), instance=str(len(imgs))))
imgs_rgba.append(PIL.Image.fromarray((255*np.concatenate([np.array(img)/255.0, foreground[..., None]], axis=-1)).astype(np.uint8)))
assert imgs, 'no images foud at '+root
if verbose:
print(f' (Found {len(imgs)} images)')
return imgs, imgs_rgba
|