Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,203 Bytes
e371ddd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
import inspect
import logging
import multiprocessing
import os
import random
import re
import tempfile
import unittest
import urllib.parse
from distutils.util import strtobool
from io import BytesIO, StringIO
from pathlib import Path
from typing import List, Optional, Union
import numpy as np
import PIL.Image
import PIL.ImageOps
import requests
from packaging import version
from .import_utils import (
BACKENDS_MAPPING,
is_compel_available,
is_flax_available,
is_note_seq_available,
is_onnx_available,
is_opencv_available,
is_torch_available,
is_torch_version,
is_torchsde_available,
)
from .logging import get_logger
global_rng = random.Random()
logger = get_logger(__name__)
if is_torch_available():
import torch
if "DIFFUSERS_TEST_DEVICE" in os.environ:
torch_device = os.environ["DIFFUSERS_TEST_DEVICE"]
available_backends = ["cuda", "cpu", "mps"]
if torch_device not in available_backends:
raise ValueError(
f"unknown torch backend for diffusers tests: {torch_device}. Available backends are:"
f" {available_backends}"
)
logger.info(f"torch_device overrode to {torch_device}")
else:
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
is_torch_higher_equal_than_1_12 = version.parse(
version.parse(torch.__version__).base_version
) >= version.parse("1.12")
if is_torch_higher_equal_than_1_12:
# Some builds of torch 1.12 don't have the mps backend registered. See #892 for more details
mps_backend_registered = hasattr(torch.backends, "mps")
torch_device = "mps" if (mps_backend_registered and torch.backends.mps.is_available()) else torch_device
def torch_all_close(a, b, *args, **kwargs):
if not is_torch_available():
raise ValueError("PyTorch needs to be installed to use this function.")
if not torch.allclose(a, b, *args, **kwargs):
assert False, f"Max diff is absolute {(a - b).abs().max()}. Diff tensor is {(a - b).abs()}."
return True
def print_tensor_test(tensor, filename="test_corrections.txt", expected_tensor_name="expected_slice"):
test_name = os.environ.get("PYTEST_CURRENT_TEST")
if not torch.is_tensor(tensor):
tensor = torch.from_numpy(tensor)
tensor_str = str(tensor.detach().cpu().flatten().to(torch.float32)).replace("\n", "")
# format is usually:
# expected_slice = np.array([-0.5713, -0.3018, -0.9814, 0.04663, -0.879, 0.76, -1.734, 0.1044, 1.161])
output_str = tensor_str.replace("tensor", f"{expected_tensor_name} = np.array")
test_file, test_class, test_fn = test_name.split("::")
test_fn = test_fn.split()[0]
with open(filename, "a") as f:
print(";".join([test_file, test_class, test_fn, output_str]), file=f)
def get_tests_dir(append_path=None):
"""
Args:
append_path: optional path to append to the tests dir path
Return:
The full path to the `tests` dir, so that the tests can be invoked from anywhere. Optionally `append_path` is
joined after the `tests` dir the former is provided.
"""
# this function caller's __file__
caller__file__ = inspect.stack()[1][1]
tests_dir = os.path.abspath(os.path.dirname(caller__file__))
while not tests_dir.endswith("tests"):
tests_dir = os.path.dirname(tests_dir)
if append_path:
return os.path.join(tests_dir, append_path)
else:
return tests_dir
def parse_flag_from_env(key, default=False):
try:
value = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_value = default
else:
# KEY is set, convert it to True or False.
try:
_value = strtobool(value)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f"If set, {key} must be yes or no.")
return _value
_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
_run_nightly_tests = parse_flag_from_env("RUN_NIGHTLY", default=False)
def floats_tensor(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.random() * scale)
return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous()
def slow(test_case):
"""
Decorator marking a test as slow.
Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.
"""
return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
def nightly(test_case):
"""
Decorator marking a test that runs nightly in the diffusers CI.
Slow tests are skipped by default. Set the RUN_NIGHTLY environment variable to a truthy value to run them.
"""
return unittest.skipUnless(_run_nightly_tests, "test is nightly")(test_case)
def require_torch(test_case):
"""
Decorator marking a test that requires PyTorch. These tests are skipped when PyTorch isn't installed.
"""
return unittest.skipUnless(is_torch_available(), "test requires PyTorch")(test_case)
def require_torch_2(test_case):
"""
Decorator marking a test that requires PyTorch 2. These tests are skipped when it isn't installed.
"""
return unittest.skipUnless(is_torch_available() and is_torch_version(">=", "2.0.0"), "test requires PyTorch 2")(
test_case
)
def require_torch_gpu(test_case):
"""Decorator marking a test that requires CUDA and PyTorch."""
return unittest.skipUnless(is_torch_available() and torch_device == "cuda", "test requires PyTorch+CUDA")(
test_case
)
def skip_mps(test_case):
"""Decorator marking a test to skip if torch_device is 'mps'"""
return unittest.skipUnless(torch_device != "mps", "test requires non 'mps' device")(test_case)
def require_flax(test_case):
"""
Decorator marking a test that requires JAX & Flax. These tests are skipped when one / both are not installed
"""
return unittest.skipUnless(is_flax_available(), "test requires JAX & Flax")(test_case)
def require_compel(test_case):
"""
Decorator marking a test that requires compel: https://github.com/damian0815/compel. These tests are skipped when
the library is not installed.
"""
return unittest.skipUnless(is_compel_available(), "test requires compel")(test_case)
def require_onnxruntime(test_case):
"""
Decorator marking a test that requires onnxruntime. These tests are skipped when onnxruntime isn't installed.
"""
return unittest.skipUnless(is_onnx_available(), "test requires onnxruntime")(test_case)
def require_note_seq(test_case):
"""
Decorator marking a test that requires note_seq. These tests are skipped when note_seq isn't installed.
"""
return unittest.skipUnless(is_note_seq_available(), "test requires note_seq")(test_case)
def require_torchsde(test_case):
"""
Decorator marking a test that requires torchsde. These tests are skipped when torchsde isn't installed.
"""
return unittest.skipUnless(is_torchsde_available(), "test requires torchsde")(test_case)
def load_numpy(arry: Union[str, np.ndarray], local_path: Optional[str] = None) -> np.ndarray:
if isinstance(arry, str):
# local_path = "/home/patrick_huggingface_co/"
if local_path is not None:
# local_path can be passed to correct images of tests
return os.path.join(local_path, "/".join([arry.split("/")[-5], arry.split("/")[-2], arry.split("/")[-1]]))
elif arry.startswith("http://") or arry.startswith("https://"):
response = requests.get(arry)
response.raise_for_status()
arry = np.load(BytesIO(response.content))
elif os.path.isfile(arry):
arry = np.load(arry)
else:
raise ValueError(
f"Incorrect path or url, URLs must start with `http://` or `https://`, and {arry} is not a valid path"
)
elif isinstance(arry, np.ndarray):
pass
else:
raise ValueError(
"Incorrect format used for numpy ndarray. Should be an url linking to an image, a local path, or a"
" ndarray."
)
return arry
def load_pt(url: str):
response = requests.get(url)
response.raise_for_status()
arry = torch.load(BytesIO(response.content))
return arry
def load_image(image: Union[str, PIL.Image.Image]) -> PIL.Image.Image:
"""
Loads `image` to a PIL Image.
Args:
image (`str` or `PIL.Image.Image`):
The image to convert to the PIL Image format.
Returns:
`PIL.Image.Image`:
A PIL Image.
"""
if isinstance(image, str):
if image.startswith("http://") or image.startswith("https://"):
image = PIL.Image.open(requests.get(image, stream=True).raw)
elif os.path.isfile(image):
image = PIL.Image.open(image)
else:
raise ValueError(
f"Incorrect path or url, URLs must start with `http://` or `https://`, and {image} is not a valid path"
)
elif isinstance(image, PIL.Image.Image):
image = image
else:
raise ValueError(
"Incorrect format used for image. Should be an url linking to an image, a local path, or a PIL image."
)
image = PIL.ImageOps.exif_transpose(image)
image = image.convert("RGB")
return image
def preprocess_image(image: PIL.Image, batch_size: int):
w, h = image.size
w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = np.vstack([image[None].transpose(0, 3, 1, 2)] * batch_size)
image = torch.from_numpy(image)
return 2.0 * image - 1.0
def export_to_gif(image: List[PIL.Image.Image], output_gif_path: str = None) -> str:
if output_gif_path is None:
output_gif_path = tempfile.NamedTemporaryFile(suffix=".gif").name
image[0].save(
output_gif_path,
save_all=True,
append_images=image[1:],
optimize=False,
duration=100,
loop=0,
)
return output_gif_path
def export_to_video(video_frames: List[np.ndarray], output_video_path: str = None) -> str:
if is_opencv_available():
import cv2
else:
raise ImportError(BACKENDS_MAPPING["opencv"][1].format("export_to_video"))
if output_video_path is None:
output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
h, w, c = video_frames[0].shape
video_writer = cv2.VideoWriter(output_video_path, fourcc, fps=8, frameSize=(w, h))
for i in range(len(video_frames)):
img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR)
video_writer.write(img)
return output_video_path
def load_hf_numpy(path) -> np.ndarray:
if not path.startswith("http://") or path.startswith("https://"):
path = os.path.join(
"https://huggingface.co/datasets/fusing/diffusers-testing/resolve/main", urllib.parse.quote(path)
)
return load_numpy(path)
# --- pytest conf functions --- #
# to avoid multiple invocation from tests/conftest.py and examples/conftest.py - make sure it's called only once
pytest_opt_registered = {}
def pytest_addoption_shared(parser):
"""
This function is to be called from `conftest.py` via `pytest_addoption` wrapper that has to be defined there.
It allows loading both `conftest.py` files at once without causing a failure due to adding the same `pytest`
option.
"""
option = "--make-reports"
if option not in pytest_opt_registered:
parser.addoption(
option,
action="store",
default=False,
help="generate report files. The value of this option is used as a prefix to report names",
)
pytest_opt_registered[option] = 1
def pytest_terminal_summary_main(tr, id):
"""
Generate multiple reports at the end of test suite run - each report goes into a dedicated file in the current
directory. The report files are prefixed with the test suite name.
This function emulates --duration and -rA pytest arguments.
This function is to be called from `conftest.py` via `pytest_terminal_summary` wrapper that has to be defined
there.
Args:
- tr: `terminalreporter` passed from `conftest.py`
- id: unique id like `tests` or `examples` that will be incorporated into the final reports filenames - this is
needed as some jobs have multiple runs of pytest, so we can't have them overwrite each other.
NB: this functions taps into a private _pytest API and while unlikely, it could break should
pytest do internal changes - also it calls default internal methods of terminalreporter which
can be hijacked by various `pytest-` plugins and interfere.
"""
from _pytest.config import create_terminal_writer
if not len(id):
id = "tests"
config = tr.config
orig_writer = config.get_terminal_writer()
orig_tbstyle = config.option.tbstyle
orig_reportchars = tr.reportchars
dir = "reports"
Path(dir).mkdir(parents=True, exist_ok=True)
report_files = {
k: f"{dir}/{id}_{k}.txt"
for k in [
"durations",
"errors",
"failures_long",
"failures_short",
"failures_line",
"passes",
"stats",
"summary_short",
"warnings",
]
}
# custom durations report
# note: there is no need to call pytest --durations=XX to get this separate report
# adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/runner.py#L66
dlist = []
for replist in tr.stats.values():
for rep in replist:
if hasattr(rep, "duration"):
dlist.append(rep)
if dlist:
dlist.sort(key=lambda x: x.duration, reverse=True)
with open(report_files["durations"], "w") as f:
durations_min = 0.05 # sec
f.write("slowest durations\n")
for i, rep in enumerate(dlist):
if rep.duration < durations_min:
f.write(f"{len(dlist)-i} durations < {durations_min} secs were omitted")
break
f.write(f"{rep.duration:02.2f}s {rep.when:<8} {rep.nodeid}\n")
def summary_failures_short(tr):
# expecting that the reports were --tb=long (default) so we chop them off here to the last frame
reports = tr.getreports("failed")
if not reports:
return
tr.write_sep("=", "FAILURES SHORT STACK")
for rep in reports:
msg = tr._getfailureheadline(rep)
tr.write_sep("_", msg, red=True, bold=True)
# chop off the optional leading extra frames, leaving only the last one
longrepr = re.sub(r".*_ _ _ (_ ){10,}_ _ ", "", rep.longreprtext, 0, re.M | re.S)
tr._tw.line(longrepr)
# note: not printing out any rep.sections to keep the report short
# use ready-made report funcs, we are just hijacking the filehandle to log to a dedicated file each
# adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/terminal.py#L814
# note: some pytest plugins may interfere by hijacking the default `terminalreporter` (e.g.
# pytest-instafail does that)
# report failures with line/short/long styles
config.option.tbstyle = "auto" # full tb
with open(report_files["failures_long"], "w") as f:
tr._tw = create_terminal_writer(config, f)
tr.summary_failures()
# config.option.tbstyle = "short" # short tb
with open(report_files["failures_short"], "w") as f:
tr._tw = create_terminal_writer(config, f)
summary_failures_short(tr)
config.option.tbstyle = "line" # one line per error
with open(report_files["failures_line"], "w") as f:
tr._tw = create_terminal_writer(config, f)
tr.summary_failures()
with open(report_files["errors"], "w") as f:
tr._tw = create_terminal_writer(config, f)
tr.summary_errors()
with open(report_files["warnings"], "w") as f:
tr._tw = create_terminal_writer(config, f)
tr.summary_warnings() # normal warnings
tr.summary_warnings() # final warnings
tr.reportchars = "wPpsxXEf" # emulate -rA (used in summary_passes() and short_test_summary())
with open(report_files["passes"], "w") as f:
tr._tw = create_terminal_writer(config, f)
tr.summary_passes()
with open(report_files["summary_short"], "w") as f:
tr._tw = create_terminal_writer(config, f)
tr.short_test_summary()
with open(report_files["stats"], "w") as f:
tr._tw = create_terminal_writer(config, f)
tr.summary_stats()
# restore:
tr._tw = orig_writer
tr.reportchars = orig_reportchars
config.option.tbstyle = orig_tbstyle
# Taken from: https://github.com/huggingface/transformers/blob/3658488ff77ff8d45101293e749263acf437f4d5/src/transformers/testing_utils.py#L1787
def run_test_in_subprocess(test_case, target_func, inputs=None, timeout=None):
"""
To run a test in a subprocess. In particular, this can avoid (GPU) memory issue.
Args:
test_case (`unittest.TestCase`):
The test that will run `target_func`.
target_func (`Callable`):
The function implementing the actual testing logic.
inputs (`dict`, *optional*, defaults to `None`):
The inputs that will be passed to `target_func` through an (input) queue.
timeout (`int`, *optional*, defaults to `None`):
The timeout (in seconds) that will be passed to the input and output queues. If not specified, the env.
variable `PYTEST_TIMEOUT` will be checked. If still `None`, its value will be set to `600`.
"""
if timeout is None:
timeout = int(os.environ.get("PYTEST_TIMEOUT", 600))
start_methohd = "spawn"
ctx = multiprocessing.get_context(start_methohd)
input_queue = ctx.Queue(1)
output_queue = ctx.JoinableQueue(1)
# We can't send `unittest.TestCase` to the child, otherwise we get issues regarding pickle.
input_queue.put(inputs, timeout=timeout)
process = ctx.Process(target=target_func, args=(input_queue, output_queue, timeout))
process.start()
# Kill the child process if we can't get outputs from it in time: otherwise, the hanging subprocess prevents
# the test to exit properly.
try:
results = output_queue.get(timeout=timeout)
output_queue.task_done()
except Exception as e:
process.terminate()
test_case.fail(e)
process.join(timeout=timeout)
if results["error"] is not None:
test_case.fail(f'{results["error"]}')
class CaptureLogger:
"""
Args:
Context manager to capture `logging` streams
logger: 'logging` logger object
Returns:
The captured output is available via `self.out`
Example:
```python
>>> from diffusers.utils import logging
>>> from diffusers.testing_utils import CaptureLogger
>>> msg = "Testing 1, 2, 3"
>>> logging.set_verbosity_info()
>>> logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.py")
>>> with CaptureLogger(logger) as cl:
... logger.info(msg)
>>> assert cl.out, msg + "\n"
```
"""
def __init__(self, logger):
self.logger = logger
self.io = StringIO()
self.sh = logging.StreamHandler(self.io)
self.out = ""
def __enter__(self):
self.logger.addHandler(self.sh)
return self
def __exit__(self, *exc):
self.logger.removeHandler(self.sh)
self.out = self.io.getvalue()
def __repr__(self):
return f"captured: {self.out}\n"
def enable_full_determinism():
"""
Helper function for reproducible behavior during distributed training. See
- https://pytorch.org/docs/stable/notes/randomness.html for pytorch
"""
# Enable PyTorch deterministic mode. This potentially requires either the environment
# variable 'CUDA_LAUNCH_BLOCKING' or 'CUBLAS_WORKSPACE_CONFIG' to be set,
# depending on the CUDA version, so we set them both here
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
torch.use_deterministic_algorithms(True)
# Enable CUDNN deterministic mode
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = False
def disable_full_determinism():
os.environ["CUDA_LAUNCH_BLOCKING"] = "0"
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ""
torch.use_deterministic_algorithms(False)
|