File size: 21,203 Bytes
e371ddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import inspect
import logging
import multiprocessing
import os
import random
import re
import tempfile
import unittest
import urllib.parse
from distutils.util import strtobool
from io import BytesIO, StringIO
from pathlib import Path
from typing import List, Optional, Union

import numpy as np
import PIL.Image
import PIL.ImageOps
import requests
from packaging import version

from .import_utils import (
    BACKENDS_MAPPING,
    is_compel_available,
    is_flax_available,
    is_note_seq_available,
    is_onnx_available,
    is_opencv_available,
    is_torch_available,
    is_torch_version,
    is_torchsde_available,
)
from .logging import get_logger


global_rng = random.Random()

logger = get_logger(__name__)

if is_torch_available():
    import torch

    if "DIFFUSERS_TEST_DEVICE" in os.environ:
        torch_device = os.environ["DIFFUSERS_TEST_DEVICE"]

        available_backends = ["cuda", "cpu", "mps"]
        if torch_device not in available_backends:
            raise ValueError(
                f"unknown torch backend for diffusers tests: {torch_device}. Available backends are:"
                f" {available_backends}"
            )
        logger.info(f"torch_device overrode to {torch_device}")
    else:
        torch_device = "cuda" if torch.cuda.is_available() else "cpu"
        is_torch_higher_equal_than_1_12 = version.parse(
            version.parse(torch.__version__).base_version
        ) >= version.parse("1.12")

        if is_torch_higher_equal_than_1_12:
            # Some builds of torch 1.12 don't have the mps backend registered. See #892 for more details
            mps_backend_registered = hasattr(torch.backends, "mps")
            torch_device = "mps" if (mps_backend_registered and torch.backends.mps.is_available()) else torch_device


def torch_all_close(a, b, *args, **kwargs):
    if not is_torch_available():
        raise ValueError("PyTorch needs to be installed to use this function.")
    if not torch.allclose(a, b, *args, **kwargs):
        assert False, f"Max diff is absolute {(a - b).abs().max()}. Diff tensor is {(a - b).abs()}."
    return True


def print_tensor_test(tensor, filename="test_corrections.txt", expected_tensor_name="expected_slice"):
    test_name = os.environ.get("PYTEST_CURRENT_TEST")
    if not torch.is_tensor(tensor):
        tensor = torch.from_numpy(tensor)

    tensor_str = str(tensor.detach().cpu().flatten().to(torch.float32)).replace("\n", "")
    # format is usually:
    # expected_slice = np.array([-0.5713, -0.3018, -0.9814, 0.04663, -0.879, 0.76, -1.734, 0.1044, 1.161])
    output_str = tensor_str.replace("tensor", f"{expected_tensor_name} = np.array")
    test_file, test_class, test_fn = test_name.split("::")
    test_fn = test_fn.split()[0]
    with open(filename, "a") as f:
        print(";".join([test_file, test_class, test_fn, output_str]), file=f)


def get_tests_dir(append_path=None):
    """
    Args:
        append_path: optional path to append to the tests dir path
    Return:
        The full path to the `tests` dir, so that the tests can be invoked from anywhere. Optionally `append_path` is
        joined after the `tests` dir the former is provided.
    """
    # this function caller's __file__
    caller__file__ = inspect.stack()[1][1]
    tests_dir = os.path.abspath(os.path.dirname(caller__file__))

    while not tests_dir.endswith("tests"):
        tests_dir = os.path.dirname(tests_dir)

    if append_path:
        return os.path.join(tests_dir, append_path)
    else:
        return tests_dir


def parse_flag_from_env(key, default=False):
    try:
        value = os.environ[key]
    except KeyError:
        # KEY isn't set, default to `default`.
        _value = default
    else:
        # KEY is set, convert it to True or False.
        try:
            _value = strtobool(value)
        except ValueError:
            # More values are supported, but let's keep the message simple.
            raise ValueError(f"If set, {key} must be yes or no.")
    return _value


_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
_run_nightly_tests = parse_flag_from_env("RUN_NIGHTLY", default=False)


def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous()


def slow(test_case):
    """
    Decorator marking a test as slow.

    Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.

    """
    return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)


def nightly(test_case):
    """
    Decorator marking a test that runs nightly in the diffusers CI.

    Slow tests are skipped by default. Set the RUN_NIGHTLY environment variable to a truthy value to run them.

    """
    return unittest.skipUnless(_run_nightly_tests, "test is nightly")(test_case)


def require_torch(test_case):
    """
    Decorator marking a test that requires PyTorch. These tests are skipped when PyTorch isn't installed.
    """
    return unittest.skipUnless(is_torch_available(), "test requires PyTorch")(test_case)


def require_torch_2(test_case):
    """
    Decorator marking a test that requires PyTorch 2. These tests are skipped when it isn't installed.
    """
    return unittest.skipUnless(is_torch_available() and is_torch_version(">=", "2.0.0"), "test requires PyTorch 2")(
        test_case
    )


def require_torch_gpu(test_case):
    """Decorator marking a test that requires CUDA and PyTorch."""
    return unittest.skipUnless(is_torch_available() and torch_device == "cuda", "test requires PyTorch+CUDA")(
        test_case
    )


def skip_mps(test_case):
    """Decorator marking a test to skip if torch_device is 'mps'"""
    return unittest.skipUnless(torch_device != "mps", "test requires non 'mps' device")(test_case)


def require_flax(test_case):
    """
    Decorator marking a test that requires JAX & Flax. These tests are skipped when one / both are not installed
    """
    return unittest.skipUnless(is_flax_available(), "test requires JAX & Flax")(test_case)


def require_compel(test_case):
    """
    Decorator marking a test that requires compel: https://github.com/damian0815/compel. These tests are skipped when
    the library is not installed.
    """
    return unittest.skipUnless(is_compel_available(), "test requires compel")(test_case)


def require_onnxruntime(test_case):
    """
    Decorator marking a test that requires onnxruntime. These tests are skipped when onnxruntime isn't installed.
    """
    return unittest.skipUnless(is_onnx_available(), "test requires onnxruntime")(test_case)


def require_note_seq(test_case):
    """
    Decorator marking a test that requires note_seq. These tests are skipped when note_seq isn't installed.
    """
    return unittest.skipUnless(is_note_seq_available(), "test requires note_seq")(test_case)


def require_torchsde(test_case):
    """
    Decorator marking a test that requires torchsde. These tests are skipped when torchsde isn't installed.
    """
    return unittest.skipUnless(is_torchsde_available(), "test requires torchsde")(test_case)


def load_numpy(arry: Union[str, np.ndarray], local_path: Optional[str] = None) -> np.ndarray:
    if isinstance(arry, str):
        # local_path = "/home/patrick_huggingface_co/"
        if local_path is not None:
            # local_path can be passed to correct images of tests
            return os.path.join(local_path, "/".join([arry.split("/")[-5], arry.split("/")[-2], arry.split("/")[-1]]))
        elif arry.startswith("http://") or arry.startswith("https://"):
            response = requests.get(arry)
            response.raise_for_status()
            arry = np.load(BytesIO(response.content))
        elif os.path.isfile(arry):
            arry = np.load(arry)
        else:
            raise ValueError(
                f"Incorrect path or url, URLs must start with `http://` or `https://`, and {arry} is not a valid path"
            )
    elif isinstance(arry, np.ndarray):
        pass
    else:
        raise ValueError(
            "Incorrect format used for numpy ndarray. Should be an url linking to an image, a local path, or a"
            " ndarray."
        )

    return arry


def load_pt(url: str):
    response = requests.get(url)
    response.raise_for_status()
    arry = torch.load(BytesIO(response.content))
    return arry


def load_image(image: Union[str, PIL.Image.Image]) -> PIL.Image.Image:
    """
    Loads `image` to a PIL Image.

    Args:
        image (`str` or `PIL.Image.Image`):
            The image to convert to the PIL Image format.
    Returns:
        `PIL.Image.Image`:
            A PIL Image.
    """
    if isinstance(image, str):
        if image.startswith("http://") or image.startswith("https://"):
            image = PIL.Image.open(requests.get(image, stream=True).raw)
        elif os.path.isfile(image):
            image = PIL.Image.open(image)
        else:
            raise ValueError(
                f"Incorrect path or url, URLs must start with `http://` or `https://`, and {image} is not a valid path"
            )
    elif isinstance(image, PIL.Image.Image):
        image = image
    else:
        raise ValueError(
            "Incorrect format used for image. Should be an url linking to an image, a local path, or a PIL image."
        )
    image = PIL.ImageOps.exif_transpose(image)
    image = image.convert("RGB")
    return image


def preprocess_image(image: PIL.Image, batch_size: int):
    w, h = image.size
    w, h = (x - x % 8 for x in (w, h))  # resize to integer multiple of 8
    image = image.resize((w, h), resample=PIL.Image.LANCZOS)
    image = np.array(image).astype(np.float32) / 255.0
    image = np.vstack([image[None].transpose(0, 3, 1, 2)] * batch_size)
    image = torch.from_numpy(image)
    return 2.0 * image - 1.0


def export_to_gif(image: List[PIL.Image.Image], output_gif_path: str = None) -> str:
    if output_gif_path is None:
        output_gif_path = tempfile.NamedTemporaryFile(suffix=".gif").name

    image[0].save(
        output_gif_path,
        save_all=True,
        append_images=image[1:],
        optimize=False,
        duration=100,
        loop=0,
    )
    return output_gif_path


def export_to_video(video_frames: List[np.ndarray], output_video_path: str = None) -> str:
    if is_opencv_available():
        import cv2
    else:
        raise ImportError(BACKENDS_MAPPING["opencv"][1].format("export_to_video"))
    if output_video_path is None:
        output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name

    fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    h, w, c = video_frames[0].shape
    video_writer = cv2.VideoWriter(output_video_path, fourcc, fps=8, frameSize=(w, h))
    for i in range(len(video_frames)):
        img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR)
        video_writer.write(img)
    return output_video_path


def load_hf_numpy(path) -> np.ndarray:
    if not path.startswith("http://") or path.startswith("https://"):
        path = os.path.join(
            "https://huggingface.co/datasets/fusing/diffusers-testing/resolve/main", urllib.parse.quote(path)
        )

    return load_numpy(path)


# --- pytest conf functions --- #

# to avoid multiple invocation from tests/conftest.py and examples/conftest.py - make sure it's called only once
pytest_opt_registered = {}


def pytest_addoption_shared(parser):
    """
    This function is to be called from `conftest.py` via `pytest_addoption` wrapper that has to be defined there.

    It allows loading both `conftest.py` files at once without causing a failure due to adding the same `pytest`
    option.

    """
    option = "--make-reports"
    if option not in pytest_opt_registered:
        parser.addoption(
            option,
            action="store",
            default=False,
            help="generate report files. The value of this option is used as a prefix to report names",
        )
        pytest_opt_registered[option] = 1


def pytest_terminal_summary_main(tr, id):
    """
    Generate multiple reports at the end of test suite run - each report goes into a dedicated file in the current
    directory. The report files are prefixed with the test suite name.

    This function emulates --duration and -rA pytest arguments.

    This function is to be called from `conftest.py` via `pytest_terminal_summary` wrapper that has to be defined
    there.

    Args:
    - tr: `terminalreporter` passed from `conftest.py`
    - id: unique id like `tests` or `examples` that will be incorporated into the final reports filenames - this is
      needed as some jobs have multiple runs of pytest, so we can't have them overwrite each other.

    NB: this functions taps into a private _pytest API and while unlikely, it could break should
    pytest do internal changes - also it calls default internal methods of terminalreporter which
    can be hijacked by various `pytest-` plugins and interfere.

    """
    from _pytest.config import create_terminal_writer

    if not len(id):
        id = "tests"

    config = tr.config
    orig_writer = config.get_terminal_writer()
    orig_tbstyle = config.option.tbstyle
    orig_reportchars = tr.reportchars

    dir = "reports"
    Path(dir).mkdir(parents=True, exist_ok=True)
    report_files = {
        k: f"{dir}/{id}_{k}.txt"
        for k in [
            "durations",
            "errors",
            "failures_long",
            "failures_short",
            "failures_line",
            "passes",
            "stats",
            "summary_short",
            "warnings",
        ]
    }

    # custom durations report
    # note: there is no need to call pytest --durations=XX to get this separate report
    # adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/runner.py#L66
    dlist = []
    for replist in tr.stats.values():
        for rep in replist:
            if hasattr(rep, "duration"):
                dlist.append(rep)
    if dlist:
        dlist.sort(key=lambda x: x.duration, reverse=True)
        with open(report_files["durations"], "w") as f:
            durations_min = 0.05  # sec
            f.write("slowest durations\n")
            for i, rep in enumerate(dlist):
                if rep.duration < durations_min:
                    f.write(f"{len(dlist)-i} durations < {durations_min} secs were omitted")
                    break
                f.write(f"{rep.duration:02.2f}s {rep.when:<8} {rep.nodeid}\n")

    def summary_failures_short(tr):
        # expecting that the reports were --tb=long (default) so we chop them off here to the last frame
        reports = tr.getreports("failed")
        if not reports:
            return
        tr.write_sep("=", "FAILURES SHORT STACK")
        for rep in reports:
            msg = tr._getfailureheadline(rep)
            tr.write_sep("_", msg, red=True, bold=True)
            # chop off the optional leading extra frames, leaving only the last one
            longrepr = re.sub(r".*_ _ _ (_ ){10,}_ _ ", "", rep.longreprtext, 0, re.M | re.S)
            tr._tw.line(longrepr)
            # note: not printing out any rep.sections to keep the report short

    # use ready-made report funcs, we are just hijacking the filehandle to log to a dedicated file each
    # adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/terminal.py#L814
    # note: some pytest plugins may interfere by hijacking the default `terminalreporter` (e.g.
    # pytest-instafail does that)

    # report failures with line/short/long styles
    config.option.tbstyle = "auto"  # full tb
    with open(report_files["failures_long"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        tr.summary_failures()

    # config.option.tbstyle = "short" # short tb
    with open(report_files["failures_short"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        summary_failures_short(tr)

    config.option.tbstyle = "line"  # one line per error
    with open(report_files["failures_line"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        tr.summary_failures()

    with open(report_files["errors"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        tr.summary_errors()

    with open(report_files["warnings"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        tr.summary_warnings()  # normal warnings
        tr.summary_warnings()  # final warnings

    tr.reportchars = "wPpsxXEf"  # emulate -rA (used in summary_passes() and short_test_summary())
    with open(report_files["passes"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        tr.summary_passes()

    with open(report_files["summary_short"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        tr.short_test_summary()

    with open(report_files["stats"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        tr.summary_stats()

    # restore:
    tr._tw = orig_writer
    tr.reportchars = orig_reportchars
    config.option.tbstyle = orig_tbstyle


# Taken from: https://github.com/huggingface/transformers/blob/3658488ff77ff8d45101293e749263acf437f4d5/src/transformers/testing_utils.py#L1787
def run_test_in_subprocess(test_case, target_func, inputs=None, timeout=None):
    """
    To run a test in a subprocess. In particular, this can avoid (GPU) memory issue.

    Args:
        test_case (`unittest.TestCase`):
            The test that will run `target_func`.
        target_func (`Callable`):
            The function implementing the actual testing logic.
        inputs (`dict`, *optional*, defaults to `None`):
            The inputs that will be passed to `target_func` through an (input) queue.
        timeout (`int`, *optional*, defaults to `None`):
            The timeout (in seconds) that will be passed to the input and output queues. If not specified, the env.
            variable `PYTEST_TIMEOUT` will be checked. If still `None`, its value will be set to `600`.
    """
    if timeout is None:
        timeout = int(os.environ.get("PYTEST_TIMEOUT", 600))

    start_methohd = "spawn"
    ctx = multiprocessing.get_context(start_methohd)

    input_queue = ctx.Queue(1)
    output_queue = ctx.JoinableQueue(1)

    # We can't send `unittest.TestCase` to the child, otherwise we get issues regarding pickle.
    input_queue.put(inputs, timeout=timeout)

    process = ctx.Process(target=target_func, args=(input_queue, output_queue, timeout))
    process.start()
    # Kill the child process if we can't get outputs from it in time: otherwise, the hanging subprocess prevents
    # the test to exit properly.
    try:
        results = output_queue.get(timeout=timeout)
        output_queue.task_done()
    except Exception as e:
        process.terminate()
        test_case.fail(e)
    process.join(timeout=timeout)

    if results["error"] is not None:
        test_case.fail(f'{results["error"]}')


class CaptureLogger:
    """
    Args:
    Context manager to capture `logging` streams
        logger: 'logging` logger object
    Returns:
        The captured output is available via `self.out`
    Example:
    ```python
    >>> from diffusers.utils import logging
    >>> from diffusers.testing_utils import CaptureLogger

    >>> msg = "Testing 1, 2, 3"
    >>> logging.set_verbosity_info()
    >>> logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.py")
    >>> with CaptureLogger(logger) as cl:
    ...     logger.info(msg)
    >>> assert cl.out, msg + "\n"
    ```
    """

    def __init__(self, logger):
        self.logger = logger
        self.io = StringIO()
        self.sh = logging.StreamHandler(self.io)
        self.out = ""

    def __enter__(self):
        self.logger.addHandler(self.sh)
        return self

    def __exit__(self, *exc):
        self.logger.removeHandler(self.sh)
        self.out = self.io.getvalue()

    def __repr__(self):
        return f"captured: {self.out}\n"


def enable_full_determinism():
    """
    Helper function for reproducible behavior during distributed training. See
    - https://pytorch.org/docs/stable/notes/randomness.html for pytorch
    """
    #  Enable PyTorch deterministic mode. This potentially requires either the environment
    #  variable 'CUDA_LAUNCH_BLOCKING' or 'CUBLAS_WORKSPACE_CONFIG' to be set,
    # depending on the CUDA version, so we set them both here
    os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
    os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
    torch.use_deterministic_algorithms(True)

    # Enable CUDNN deterministic mode
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.backends.cuda.matmul.allow_tf32 = False


def disable_full_determinism():
    os.environ["CUDA_LAUNCH_BLOCKING"] = "0"
    os.environ["CUBLAS_WORKSPACE_CONFIG"] = ""
    torch.use_deterministic_algorithms(False)