File size: 11,824 Bytes
e371ddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

import torch
from torch import nn

from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin


class T5FilmDecoder(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
        self,
        input_dims: int = 128,
        targets_length: int = 256,
        max_decoder_noise_time: float = 2000.0,
        d_model: int = 768,
        num_layers: int = 12,
        num_heads: int = 12,
        d_kv: int = 64,
        d_ff: int = 2048,
        dropout_rate: float = 0.1,
    ):
        super().__init__()

        self.conditioning_emb = nn.Sequential(
            nn.Linear(d_model, d_model * 4, bias=False),
            nn.SiLU(),
            nn.Linear(d_model * 4, d_model * 4, bias=False),
            nn.SiLU(),
        )

        self.position_encoding = nn.Embedding(targets_length, d_model)
        self.position_encoding.weight.requires_grad = False

        self.continuous_inputs_projection = nn.Linear(input_dims, d_model, bias=False)

        self.dropout = nn.Dropout(p=dropout_rate)

        self.decoders = nn.ModuleList()
        for lyr_num in range(num_layers):
            # FiLM conditional T5 decoder
            lyr = DecoderLayer(d_model=d_model, d_kv=d_kv, num_heads=num_heads, d_ff=d_ff, dropout_rate=dropout_rate)
            self.decoders.append(lyr)

        self.decoder_norm = T5LayerNorm(d_model)

        self.post_dropout = nn.Dropout(p=dropout_rate)
        self.spec_out = nn.Linear(d_model, input_dims, bias=False)

    def encoder_decoder_mask(self, query_input, key_input):
        mask = torch.mul(query_input.unsqueeze(-1), key_input.unsqueeze(-2))
        return mask.unsqueeze(-3)

    def forward(self, encodings_and_masks, decoder_input_tokens, decoder_noise_time):
        batch, _, _ = decoder_input_tokens.shape
        assert decoder_noise_time.shape == (batch,)

        # decoder_noise_time is in [0, 1), so rescale to expected timing range.
        time_steps = get_timestep_embedding(
            decoder_noise_time * self.config.max_decoder_noise_time,
            embedding_dim=self.config.d_model,
            max_period=self.config.max_decoder_noise_time,
        ).to(dtype=self.dtype)

        conditioning_emb = self.conditioning_emb(time_steps).unsqueeze(1)

        assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)

        seq_length = decoder_input_tokens.shape[1]

        # If we want to use relative positions for audio context, we can just offset
        # this sequence by the length of encodings_and_masks.
        decoder_positions = torch.broadcast_to(
            torch.arange(seq_length, device=decoder_input_tokens.device),
            (batch, seq_length),
        )

        position_encodings = self.position_encoding(decoder_positions)

        inputs = self.continuous_inputs_projection(decoder_input_tokens)
        inputs += position_encodings
        y = self.dropout(inputs)

        # decoder: No padding present.
        decoder_mask = torch.ones(
            decoder_input_tokens.shape[:2], device=decoder_input_tokens.device, dtype=inputs.dtype
        )

        # Translate encoding masks to encoder-decoder masks.
        encodings_and_encdec_masks = [(x, self.encoder_decoder_mask(decoder_mask, y)) for x, y in encodings_and_masks]

        # cross attend style: concat encodings
        encoded = torch.cat([x[0] for x in encodings_and_encdec_masks], dim=1)
        encoder_decoder_mask = torch.cat([x[1] for x in encodings_and_encdec_masks], dim=-1)

        for lyr in self.decoders:
            y = lyr(
                y,
                conditioning_emb=conditioning_emb,
                encoder_hidden_states=encoded,
                encoder_attention_mask=encoder_decoder_mask,
            )[0]

        y = self.decoder_norm(y)
        y = self.post_dropout(y)

        spec_out = self.spec_out(y)
        return spec_out


class DecoderLayer(nn.Module):
    def __init__(self, d_model, d_kv, num_heads, d_ff, dropout_rate, layer_norm_epsilon=1e-6):
        super().__init__()
        self.layer = nn.ModuleList()

        # cond self attention: layer 0
        self.layer.append(
            T5LayerSelfAttentionCond(d_model=d_model, d_kv=d_kv, num_heads=num_heads, dropout_rate=dropout_rate)
        )

        # cross attention: layer 1
        self.layer.append(
            T5LayerCrossAttention(
                d_model=d_model,
                d_kv=d_kv,
                num_heads=num_heads,
                dropout_rate=dropout_rate,
                layer_norm_epsilon=layer_norm_epsilon,
            )
        )

        # Film Cond MLP + dropout: last layer
        self.layer.append(
            T5LayerFFCond(d_model=d_model, d_ff=d_ff, dropout_rate=dropout_rate, layer_norm_epsilon=layer_norm_epsilon)
        )

    def forward(
        self,
        hidden_states,
        conditioning_emb=None,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        encoder_decoder_position_bias=None,
    ):
        hidden_states = self.layer[0](
            hidden_states,
            conditioning_emb=conditioning_emb,
            attention_mask=attention_mask,
        )

        if encoder_hidden_states is not None:
            encoder_extended_attention_mask = torch.where(encoder_attention_mask > 0, 0, -1e10).to(
                encoder_hidden_states.dtype
            )

            hidden_states = self.layer[1](
                hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_extended_attention_mask,
            )

        # Apply Film Conditional Feed Forward layer
        hidden_states = self.layer[-1](hidden_states, conditioning_emb)

        return (hidden_states,)


class T5LayerSelfAttentionCond(nn.Module):
    def __init__(self, d_model, d_kv, num_heads, dropout_rate):
        super().__init__()
        self.layer_norm = T5LayerNorm(d_model)
        self.FiLMLayer = T5FiLMLayer(in_features=d_model * 4, out_features=d_model)
        self.attention = Attention(query_dim=d_model, heads=num_heads, dim_head=d_kv, out_bias=False, scale_qk=False)
        self.dropout = nn.Dropout(dropout_rate)

    def forward(
        self,
        hidden_states,
        conditioning_emb=None,
        attention_mask=None,
    ):
        # pre_self_attention_layer_norm
        normed_hidden_states = self.layer_norm(hidden_states)

        if conditioning_emb is not None:
            normed_hidden_states = self.FiLMLayer(normed_hidden_states, conditioning_emb)

        # Self-attention block
        attention_output = self.attention(normed_hidden_states)

        hidden_states = hidden_states + self.dropout(attention_output)

        return hidden_states


class T5LayerCrossAttention(nn.Module):
    def __init__(self, d_model, d_kv, num_heads, dropout_rate, layer_norm_epsilon):
        super().__init__()
        self.attention = Attention(query_dim=d_model, heads=num_heads, dim_head=d_kv, out_bias=False, scale_qk=False)
        self.layer_norm = T5LayerNorm(d_model, eps=layer_norm_epsilon)
        self.dropout = nn.Dropout(dropout_rate)

    def forward(
        self,
        hidden_states,
        key_value_states=None,
        attention_mask=None,
    ):
        normed_hidden_states = self.layer_norm(hidden_states)
        attention_output = self.attention(
            normed_hidden_states,
            encoder_hidden_states=key_value_states,
            attention_mask=attention_mask.squeeze(1),
        )
        layer_output = hidden_states + self.dropout(attention_output)
        return layer_output


class T5LayerFFCond(nn.Module):
    def __init__(self, d_model, d_ff, dropout_rate, layer_norm_epsilon):
        super().__init__()
        self.DenseReluDense = T5DenseGatedActDense(d_model=d_model, d_ff=d_ff, dropout_rate=dropout_rate)
        self.film = T5FiLMLayer(in_features=d_model * 4, out_features=d_model)
        self.layer_norm = T5LayerNorm(d_model, eps=layer_norm_epsilon)
        self.dropout = nn.Dropout(dropout_rate)

    def forward(self, hidden_states, conditioning_emb=None):
        forwarded_states = self.layer_norm(hidden_states)
        if conditioning_emb is not None:
            forwarded_states = self.film(forwarded_states, conditioning_emb)

        forwarded_states = self.DenseReluDense(forwarded_states)
        hidden_states = hidden_states + self.dropout(forwarded_states)
        return hidden_states


class T5DenseGatedActDense(nn.Module):
    def __init__(self, d_model, d_ff, dropout_rate):
        super().__init__()
        self.wi_0 = nn.Linear(d_model, d_ff, bias=False)
        self.wi_1 = nn.Linear(d_model, d_ff, bias=False)
        self.wo = nn.Linear(d_ff, d_model, bias=False)
        self.dropout = nn.Dropout(dropout_rate)
        self.act = NewGELUActivation()

    def forward(self, hidden_states):
        hidden_gelu = self.act(self.wi_0(hidden_states))
        hidden_linear = self.wi_1(hidden_states)
        hidden_states = hidden_gelu * hidden_linear
        hidden_states = self.dropout(hidden_states)

        hidden_states = self.wo(hidden_states)
        return hidden_states


class T5LayerNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
        # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated
        # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
        # half-precision inputs is done in fp32

        variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)

        # convert into half-precision if necessary
        if self.weight.dtype in [torch.float16, torch.bfloat16]:
            hidden_states = hidden_states.to(self.weight.dtype)

        return self.weight * hidden_states


class NewGELUActivation(nn.Module):
    """
    Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
    the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
    """

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))


class T5FiLMLayer(nn.Module):
    """
    FiLM Layer
    """

    def __init__(self, in_features, out_features):
        super().__init__()
        self.scale_bias = nn.Linear(in_features, out_features * 2, bias=False)

    def forward(self, x, conditioning_emb):
        emb = self.scale_bias(conditioning_emb)
        scale, shift = torch.chunk(emb, 2, -1)
        x = x * (1 + scale) + shift
        return x