File size: 2,855 Bytes
5f093a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# utilities needed to load image pairs
# --------------------------------------------------------
import numpy as np
import torch


def make_pairs(imgs, scene_graph='complete', prefilter=None, symmetrize=True):
    pairs = []
    if scene_graph == 'complete':  # complete graph
        for i in range(len(imgs)):
            for j in range(i):
                pairs.append((imgs[i], imgs[j]))
    elif scene_graph.startswith('swin'):
        winsize = int(scene_graph.split('-')[1]) if '-' in scene_graph else 3
        pairsid = set()
        for i in range(len(imgs)):
            for j in range(1, winsize+1):
                idx = (i + j) % len(imgs)  # explicit loop closure
                pairsid.add((i, idx) if i < idx else (idx, i))
        for i, j in pairsid:
            pairs.append((imgs[i], imgs[j]))
    elif scene_graph.startswith('oneref'):
        refid = int(scene_graph.split('-')[1]) if '-' in scene_graph else 0
        for j in range(len(imgs)):
            if j != refid:
                pairs.append((imgs[refid], imgs[j]))
    if symmetrize:
        pairs += [(img2, img1) for img1, img2 in pairs]

    # now, remove edges
    if isinstance(prefilter, str) and prefilter.startswith('seq'):
        pairs = filter_pairs_seq(pairs, int(prefilter[3:]))

    if isinstance(prefilter, str) and prefilter.startswith('cyc'):
        pairs = filter_pairs_seq(pairs, int(prefilter[3:]), cyclic=True)

    return pairs


def sel(x, kept):
    if isinstance(x, dict):
        return {k: sel(v, kept) for k, v in x.items()}
    if isinstance(x, (torch.Tensor, np.ndarray)):
        return x[kept]
    if isinstance(x, (tuple, list)):
        return type(x)([x[k] for k in kept])


def _filter_edges_seq(edges, seq_dis_thr, cyclic=False):
    # number of images
    n = max(max(e) for e in edges)+1

    kept = []
    for e, (i, j) in enumerate(edges):
        dis = abs(i-j)
        if cyclic:
            dis = min(dis, abs(i+n-j), abs(i-n-j))
        if dis <= seq_dis_thr:
            kept.append(e)
    return kept


def filter_pairs_seq(pairs, seq_dis_thr, cyclic=False):
    edges = [(img1['idx'], img2['idx']) for img1, img2 in pairs]
    kept = _filter_edges_seq(edges, seq_dis_thr, cyclic=cyclic)
    return [pairs[i] for i in kept]


def filter_edges_seq(view1, view2, pred1, pred2, seq_dis_thr, cyclic=False):
    edges = [(int(i), int(j)) for i, j in zip(view1['idx'], view2['idx'])]
    kept = _filter_edges_seq(edges, seq_dis_thr, cyclic=cyclic)
    print(f'>> Filtering edges more than {seq_dis_thr} frames apart: kept {len(kept)}/{len(edges)} edges')
    return sel(view1, kept), sel(view2, kept), sel(pred1, kept), sel(pred2, kept)