Spaces:
Runtime error
Runtime error
Upload 7 files
Browse files- .gitattributes +35 -35
- README.md +13 -13
- app.py +59 -0
- final_model.pth +3 -0
- model.py +597 -0
- requirements.txt +5 -0
- xlsr2_300m.pt +3 -0
.gitattributes
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: mit
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: AudioDeepFake
|
3 |
+
emoji: 📊
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.28.3
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import librosa
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import Tensor
|
6 |
+
import torch.nn as nn
|
7 |
+
from model import Model
|
8 |
+
|
9 |
+
model_path = 'final_model.pth'
|
10 |
+
def load_data(path):
|
11 |
+
X, fs = librosa.load(path)
|
12 |
+
X_pad = pad(X,64600)
|
13 |
+
x_inp = Tensor(X_pad).unsqueeze(0)
|
14 |
+
return x_inp,fs
|
15 |
+
|
16 |
+
def pad(x, max_len=64600):
|
17 |
+
x_len = x.shape[0]
|
18 |
+
if x_len >= max_len:
|
19 |
+
return x[:max_len]
|
20 |
+
# need to pad
|
21 |
+
num_repeats = int(max_len / x_len)+1
|
22 |
+
padded_x = np.tile(x, (1, num_repeats))[:, :max_len][0]
|
23 |
+
return padded_x
|
24 |
+
|
25 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
26 |
+
model = Model(None, device)
|
27 |
+
nb_params = sum([param.view(-1).size()[0] for param in model.parameters()])
|
28 |
+
model =nn.DataParallel(model).to(device)
|
29 |
+
|
30 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
31 |
+
print("Model loaded : {}".format(model_path))
|
32 |
+
|
33 |
+
model.eval()
|
34 |
+
prediction_dict = {0: 'Fake', 1: 'Real'}
|
35 |
+
def Detection(audio_1):
|
36 |
+
|
37 |
+
x_inp,fs = load_data(audio_1)
|
38 |
+
print(x_inp.shape)
|
39 |
+
validity_probs = model(x_inp)
|
40 |
+
validity_probs = torch.nn.functional.softmax(validity_probs, dim=1)
|
41 |
+
|
42 |
+
emotion = torch.argmax(validity_probs).item()
|
43 |
+
print(emotion)
|
44 |
+
validity = prediction_dict[emotion]
|
45 |
+
# validity as a dictionary of class probabilities
|
46 |
+
# validity = {prediction_dict[i]: float(validity_probs[0][i]) for i in range(2)}
|
47 |
+
|
48 |
+
return validity
|
49 |
+
|
50 |
+
audio_1 = gr.Audio(type="filepath", label="Audio 1")
|
51 |
+
# text_output = gr.Textbox(label="Prediction")
|
52 |
+
text_output = gr.Textbox(label="Similarity Score")
|
53 |
+
gr.Interface(
|
54 |
+
fn=Detection,
|
55 |
+
inputs=audio_1,
|
56 |
+
outputs=text_output,
|
57 |
+
title="Audio Deepfake Detection",
|
58 |
+
description="Audio Deepfake Detection using finetuned model on for-2seconds dataset.",
|
59 |
+
).launch()
|
final_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b8cbd6c9edd278e22605a9cb58c212405a1364eaa1e145e54aeea1ab06d9ca2
|
3 |
+
size 1271630150
|
model.py
ADDED
@@ -0,0 +1,597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from typing import Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import Tensor
|
9 |
+
import fairseq
|
10 |
+
|
11 |
+
|
12 |
+
___author__ = "Hemlata Tak"
|
13 |
+
__email__ = "[email protected]"
|
14 |
+
|
15 |
+
############################
|
16 |
+
## FOR fine-tuned SSL MODEL
|
17 |
+
############################
|
18 |
+
|
19 |
+
|
20 |
+
class SSLModel(nn.Module):
|
21 |
+
def __init__(self,device):
|
22 |
+
super(SSLModel, self).__init__()
|
23 |
+
|
24 |
+
cp_path = 'xlsr2_300m.pt' # Change the pre-trained XLSR model path.
|
25 |
+
model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([cp_path])
|
26 |
+
self.model = model[0]
|
27 |
+
self.device=device
|
28 |
+
self.out_dim = 1024
|
29 |
+
return
|
30 |
+
|
31 |
+
def extract_feat(self, input_data):
|
32 |
+
|
33 |
+
# put the model to GPU if it not there
|
34 |
+
if next(self.model.parameters()).device != input_data.device \
|
35 |
+
or next(self.model.parameters()).dtype != input_data.dtype:
|
36 |
+
self.model.to(input_data.device, dtype=input_data.dtype)
|
37 |
+
self.model.train()
|
38 |
+
|
39 |
+
|
40 |
+
if True:
|
41 |
+
# input should be in shape (batch, length)
|
42 |
+
if input_data.ndim == 3:
|
43 |
+
input_tmp = input_data[:, :, 0]
|
44 |
+
else:
|
45 |
+
input_tmp = input_data
|
46 |
+
|
47 |
+
# [batch, length, dim]
|
48 |
+
emb = self.model(input_tmp, mask=False, features_only=True)['x']
|
49 |
+
return emb
|
50 |
+
|
51 |
+
|
52 |
+
#---------AASIST back-end------------------------#
|
53 |
+
''' Jee-weon Jung, Hee-Soo Heo, Hemlata Tak, Hye-jin Shim, Joon Son Chung, Bong-Jin Lee, Ha-Jin Yu and Nicholas Evans.
|
54 |
+
AASIST: Audio Anti-Spoofing Using Integrated Spectro-Temporal Graph Attention Networks.
|
55 |
+
In Proc. ICASSP 2022, pp: 6367--6371.'''
|
56 |
+
|
57 |
+
|
58 |
+
class GraphAttentionLayer(nn.Module):
|
59 |
+
def __init__(self, in_dim, out_dim, **kwargs):
|
60 |
+
super().__init__()
|
61 |
+
|
62 |
+
# attention map
|
63 |
+
self.att_proj = nn.Linear(in_dim, out_dim)
|
64 |
+
self.att_weight = self._init_new_params(out_dim, 1)
|
65 |
+
|
66 |
+
# project
|
67 |
+
self.proj_with_att = nn.Linear(in_dim, out_dim)
|
68 |
+
self.proj_without_att = nn.Linear(in_dim, out_dim)
|
69 |
+
|
70 |
+
# batch norm
|
71 |
+
self.bn = nn.BatchNorm1d(out_dim)
|
72 |
+
|
73 |
+
# dropout for inputs
|
74 |
+
self.input_drop = nn.Dropout(p=0.2)
|
75 |
+
|
76 |
+
# activate
|
77 |
+
self.act = nn.SELU(inplace=True)
|
78 |
+
|
79 |
+
# temperature
|
80 |
+
self.temp = 1.
|
81 |
+
if "temperature" in kwargs:
|
82 |
+
self.temp = kwargs["temperature"]
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
'''
|
86 |
+
x :(#bs, #node, #dim)
|
87 |
+
'''
|
88 |
+
# apply input dropout
|
89 |
+
x = self.input_drop(x)
|
90 |
+
|
91 |
+
# derive attention map
|
92 |
+
att_map = self._derive_att_map(x)
|
93 |
+
|
94 |
+
# projection
|
95 |
+
x = self._project(x, att_map)
|
96 |
+
|
97 |
+
# apply batch norm
|
98 |
+
x = self._apply_BN(x)
|
99 |
+
x = self.act(x)
|
100 |
+
return x
|
101 |
+
|
102 |
+
def _pairwise_mul_nodes(self, x):
|
103 |
+
'''
|
104 |
+
Calculates pairwise multiplication of nodes.
|
105 |
+
- for attention map
|
106 |
+
x :(#bs, #node, #dim)
|
107 |
+
out_shape :(#bs, #node, #node, #dim)
|
108 |
+
'''
|
109 |
+
|
110 |
+
nb_nodes = x.size(1)
|
111 |
+
x = x.unsqueeze(2).expand(-1, -1, nb_nodes, -1)
|
112 |
+
x_mirror = x.transpose(1, 2)
|
113 |
+
|
114 |
+
return x * x_mirror
|
115 |
+
|
116 |
+
def _derive_att_map(self, x):
|
117 |
+
'''
|
118 |
+
x :(#bs, #node, #dim)
|
119 |
+
out_shape :(#bs, #node, #node, 1)
|
120 |
+
'''
|
121 |
+
att_map = self._pairwise_mul_nodes(x)
|
122 |
+
# size: (#bs, #node, #node, #dim_out)
|
123 |
+
att_map = torch.tanh(self.att_proj(att_map))
|
124 |
+
# size: (#bs, #node, #node, 1)
|
125 |
+
att_map = torch.matmul(att_map, self.att_weight)
|
126 |
+
|
127 |
+
# apply temperature
|
128 |
+
att_map = att_map / self.temp
|
129 |
+
|
130 |
+
att_map = F.softmax(att_map, dim=-2)
|
131 |
+
|
132 |
+
return att_map
|
133 |
+
|
134 |
+
def _project(self, x, att_map):
|
135 |
+
x1 = self.proj_with_att(torch.matmul(att_map.squeeze(-1), x))
|
136 |
+
x2 = self.proj_without_att(x)
|
137 |
+
|
138 |
+
return x1 + x2
|
139 |
+
|
140 |
+
def _apply_BN(self, x):
|
141 |
+
org_size = x.size()
|
142 |
+
x = x.view(-1, org_size[-1])
|
143 |
+
x = self.bn(x)
|
144 |
+
x = x.view(org_size)
|
145 |
+
|
146 |
+
return x
|
147 |
+
|
148 |
+
def _init_new_params(self, *size):
|
149 |
+
out = nn.Parameter(torch.FloatTensor(*size))
|
150 |
+
nn.init.xavier_normal_(out)
|
151 |
+
return out
|
152 |
+
|
153 |
+
|
154 |
+
class HtrgGraphAttentionLayer(nn.Module):
|
155 |
+
def __init__(self, in_dim, out_dim, **kwargs):
|
156 |
+
super().__init__()
|
157 |
+
|
158 |
+
self.proj_type1 = nn.Linear(in_dim, in_dim)
|
159 |
+
self.proj_type2 = nn.Linear(in_dim, in_dim)
|
160 |
+
|
161 |
+
# attention map
|
162 |
+
self.att_proj = nn.Linear(in_dim, out_dim)
|
163 |
+
self.att_projM = nn.Linear(in_dim, out_dim)
|
164 |
+
|
165 |
+
self.att_weight11 = self._init_new_params(out_dim, 1)
|
166 |
+
self.att_weight22 = self._init_new_params(out_dim, 1)
|
167 |
+
self.att_weight12 = self._init_new_params(out_dim, 1)
|
168 |
+
self.att_weightM = self._init_new_params(out_dim, 1)
|
169 |
+
|
170 |
+
# project
|
171 |
+
self.proj_with_att = nn.Linear(in_dim, out_dim)
|
172 |
+
self.proj_without_att = nn.Linear(in_dim, out_dim)
|
173 |
+
|
174 |
+
self.proj_with_attM = nn.Linear(in_dim, out_dim)
|
175 |
+
self.proj_without_attM = nn.Linear(in_dim, out_dim)
|
176 |
+
|
177 |
+
# batch norm
|
178 |
+
self.bn = nn.BatchNorm1d(out_dim)
|
179 |
+
|
180 |
+
# dropout for inputs
|
181 |
+
self.input_drop = nn.Dropout(p=0.2)
|
182 |
+
|
183 |
+
# activate
|
184 |
+
self.act = nn.SELU(inplace=True)
|
185 |
+
|
186 |
+
# temperature
|
187 |
+
self.temp = 1.
|
188 |
+
if "temperature" in kwargs:
|
189 |
+
self.temp = kwargs["temperature"]
|
190 |
+
|
191 |
+
def forward(self, x1, x2, master=None):
|
192 |
+
'''
|
193 |
+
x1 :(#bs, #node, #dim)
|
194 |
+
x2 :(#bs, #node, #dim)
|
195 |
+
'''
|
196 |
+
#print('x1',x1.shape)
|
197 |
+
#print('x2',x2.shape)
|
198 |
+
num_type1 = x1.size(1)
|
199 |
+
num_type2 = x2.size(1)
|
200 |
+
#print('num_type1',num_type1)
|
201 |
+
#print('num_type2',num_type2)
|
202 |
+
x1 = self.proj_type1(x1)
|
203 |
+
#print('proj_type1',x1.shape)
|
204 |
+
x2 = self.proj_type2(x2)
|
205 |
+
#print('proj_type2',x2.shape)
|
206 |
+
x = torch.cat([x1, x2], dim=1)
|
207 |
+
#print('Concat x1 and x2',x.shape)
|
208 |
+
|
209 |
+
if master is None:
|
210 |
+
master = torch.mean(x, dim=1, keepdim=True)
|
211 |
+
#print('master',master.shape)
|
212 |
+
# apply input dropout
|
213 |
+
x = self.input_drop(x)
|
214 |
+
|
215 |
+
# derive attention map
|
216 |
+
att_map = self._derive_att_map(x, num_type1, num_type2)
|
217 |
+
#print('master',master.shape)
|
218 |
+
# directional edge for master node
|
219 |
+
master = self._update_master(x, master)
|
220 |
+
#print('master',master.shape)
|
221 |
+
# projection
|
222 |
+
x = self._project(x, att_map)
|
223 |
+
#print('proj x',x.shape)
|
224 |
+
# apply batch norm
|
225 |
+
x = self._apply_BN(x)
|
226 |
+
x = self.act(x)
|
227 |
+
|
228 |
+
x1 = x.narrow(1, 0, num_type1)
|
229 |
+
#print('x1',x1.shape)
|
230 |
+
x2 = x.narrow(1, num_type1, num_type2)
|
231 |
+
#print('x2',x2.shape)
|
232 |
+
return x1, x2, master
|
233 |
+
|
234 |
+
def _update_master(self, x, master):
|
235 |
+
|
236 |
+
att_map = self._derive_att_map_master(x, master)
|
237 |
+
master = self._project_master(x, master, att_map)
|
238 |
+
|
239 |
+
return master
|
240 |
+
|
241 |
+
def _pairwise_mul_nodes(self, x):
|
242 |
+
'''
|
243 |
+
Calculates pairwise multiplication of nodes.
|
244 |
+
- for attention map
|
245 |
+
x :(#bs, #node, #dim)
|
246 |
+
out_shape :(#bs, #node, #node, #dim)
|
247 |
+
'''
|
248 |
+
|
249 |
+
nb_nodes = x.size(1)
|
250 |
+
x = x.unsqueeze(2).expand(-1, -1, nb_nodes, -1)
|
251 |
+
x_mirror = x.transpose(1, 2)
|
252 |
+
|
253 |
+
return x * x_mirror
|
254 |
+
|
255 |
+
def _derive_att_map_master(self, x, master):
|
256 |
+
'''
|
257 |
+
x :(#bs, #node, #dim)
|
258 |
+
out_shape :(#bs, #node, #node, 1)
|
259 |
+
'''
|
260 |
+
att_map = x * master
|
261 |
+
att_map = torch.tanh(self.att_projM(att_map))
|
262 |
+
|
263 |
+
att_map = torch.matmul(att_map, self.att_weightM)
|
264 |
+
|
265 |
+
# apply temperature
|
266 |
+
att_map = att_map / self.temp
|
267 |
+
|
268 |
+
att_map = F.softmax(att_map, dim=-2)
|
269 |
+
|
270 |
+
return att_map
|
271 |
+
|
272 |
+
def _derive_att_map(self, x, num_type1, num_type2):
|
273 |
+
'''
|
274 |
+
x :(#bs, #node, #dim)
|
275 |
+
out_shape :(#bs, #node, #node, 1)
|
276 |
+
'''
|
277 |
+
att_map = self._pairwise_mul_nodes(x)
|
278 |
+
# size: (#bs, #node, #node, #dim_out)
|
279 |
+
att_map = torch.tanh(self.att_proj(att_map))
|
280 |
+
# size: (#bs, #node, #node, 1)
|
281 |
+
|
282 |
+
att_board = torch.zeros_like(att_map[:, :, :, 0]).unsqueeze(-1)
|
283 |
+
|
284 |
+
att_board[:, :num_type1, :num_type1, :] = torch.matmul(
|
285 |
+
att_map[:, :num_type1, :num_type1, :], self.att_weight11)
|
286 |
+
att_board[:, num_type1:, num_type1:, :] = torch.matmul(
|
287 |
+
att_map[:, num_type1:, num_type1:, :], self.att_weight22)
|
288 |
+
att_board[:, :num_type1, num_type1:, :] = torch.matmul(
|
289 |
+
att_map[:, :num_type1, num_type1:, :], self.att_weight12)
|
290 |
+
att_board[:, num_type1:, :num_type1, :] = torch.matmul(
|
291 |
+
att_map[:, num_type1:, :num_type1, :], self.att_weight12)
|
292 |
+
|
293 |
+
att_map = att_board
|
294 |
+
|
295 |
+
|
296 |
+
|
297 |
+
# apply temperature
|
298 |
+
att_map = att_map / self.temp
|
299 |
+
|
300 |
+
att_map = F.softmax(att_map, dim=-2)
|
301 |
+
|
302 |
+
return att_map
|
303 |
+
|
304 |
+
def _project(self, x, att_map):
|
305 |
+
x1 = self.proj_with_att(torch.matmul(att_map.squeeze(-1), x))
|
306 |
+
x2 = self.proj_without_att(x)
|
307 |
+
|
308 |
+
return x1 + x2
|
309 |
+
|
310 |
+
def _project_master(self, x, master, att_map):
|
311 |
+
|
312 |
+
x1 = self.proj_with_attM(torch.matmul(
|
313 |
+
att_map.squeeze(-1).unsqueeze(1), x))
|
314 |
+
x2 = self.proj_without_attM(master)
|
315 |
+
|
316 |
+
return x1 + x2
|
317 |
+
|
318 |
+
def _apply_BN(self, x):
|
319 |
+
org_size = x.size()
|
320 |
+
x = x.view(-1, org_size[-1])
|
321 |
+
x = self.bn(x)
|
322 |
+
x = x.view(org_size)
|
323 |
+
|
324 |
+
return x
|
325 |
+
|
326 |
+
def _init_new_params(self, *size):
|
327 |
+
out = nn.Parameter(torch.FloatTensor(*size))
|
328 |
+
nn.init.xavier_normal_(out)
|
329 |
+
return out
|
330 |
+
|
331 |
+
|
332 |
+
class GraphPool(nn.Module):
|
333 |
+
def __init__(self, k: float, in_dim: int, p: Union[float, int]):
|
334 |
+
super().__init__()
|
335 |
+
self.k = k
|
336 |
+
self.sigmoid = nn.Sigmoid()
|
337 |
+
self.proj = nn.Linear(in_dim, 1)
|
338 |
+
self.drop = nn.Dropout(p=p) if p > 0 else nn.Identity()
|
339 |
+
self.in_dim = in_dim
|
340 |
+
|
341 |
+
def forward(self, h):
|
342 |
+
Z = self.drop(h)
|
343 |
+
weights = self.proj(Z)
|
344 |
+
scores = self.sigmoid(weights)
|
345 |
+
new_h = self.top_k_graph(scores, h, self.k)
|
346 |
+
|
347 |
+
return new_h
|
348 |
+
|
349 |
+
def top_k_graph(self, scores, h, k):
|
350 |
+
"""
|
351 |
+
args
|
352 |
+
=====
|
353 |
+
scores: attention-based weights (#bs, #node, 1)
|
354 |
+
h: graph data (#bs, #node, #dim)
|
355 |
+
k: ratio of remaining nodes, (float)
|
356 |
+
returns
|
357 |
+
=====
|
358 |
+
h: graph pool applied data (#bs, #node', #dim)
|
359 |
+
"""
|
360 |
+
_, n_nodes, n_feat = h.size()
|
361 |
+
n_nodes = max(int(n_nodes * k), 1)
|
362 |
+
_, idx = torch.topk(scores, n_nodes, dim=1)
|
363 |
+
idx = idx.expand(-1, -1, n_feat)
|
364 |
+
|
365 |
+
h = h * scores
|
366 |
+
h = torch.gather(h, 1, idx)
|
367 |
+
|
368 |
+
return h
|
369 |
+
|
370 |
+
|
371 |
+
|
372 |
+
|
373 |
+
class Residual_block(nn.Module):
|
374 |
+
def __init__(self, nb_filts, first=False):
|
375 |
+
super().__init__()
|
376 |
+
self.first = first
|
377 |
+
|
378 |
+
if not self.first:
|
379 |
+
self.bn1 = nn.BatchNorm2d(num_features=nb_filts[0])
|
380 |
+
self.conv1 = nn.Conv2d(in_channels=nb_filts[0],
|
381 |
+
out_channels=nb_filts[1],
|
382 |
+
kernel_size=(2, 3),
|
383 |
+
padding=(1, 1),
|
384 |
+
stride=1)
|
385 |
+
self.selu = nn.SELU(inplace=True)
|
386 |
+
|
387 |
+
self.bn2 = nn.BatchNorm2d(num_features=nb_filts[1])
|
388 |
+
self.conv2 = nn.Conv2d(in_channels=nb_filts[1],
|
389 |
+
out_channels=nb_filts[1],
|
390 |
+
kernel_size=(2, 3),
|
391 |
+
padding=(0, 1),
|
392 |
+
stride=1)
|
393 |
+
|
394 |
+
if nb_filts[0] != nb_filts[1]:
|
395 |
+
self.downsample = True
|
396 |
+
self.conv_downsample = nn.Conv2d(in_channels=nb_filts[0],
|
397 |
+
out_channels=nb_filts[1],
|
398 |
+
padding=(0, 1),
|
399 |
+
kernel_size=(1, 3),
|
400 |
+
stride=1)
|
401 |
+
|
402 |
+
else:
|
403 |
+
self.downsample = False
|
404 |
+
|
405 |
+
|
406 |
+
def forward(self, x):
|
407 |
+
identity = x
|
408 |
+
if not self.first:
|
409 |
+
out = self.bn1(x)
|
410 |
+
out = self.selu(out)
|
411 |
+
else:
|
412 |
+
out = x
|
413 |
+
|
414 |
+
#print('out',out.shape)
|
415 |
+
out = self.conv1(x)
|
416 |
+
|
417 |
+
#print('aft conv1 out',out.shape)
|
418 |
+
out = self.bn2(out)
|
419 |
+
out = self.selu(out)
|
420 |
+
# print('out',out.shape)
|
421 |
+
out = self.conv2(out)
|
422 |
+
#print('conv2 out',out.shape)
|
423 |
+
|
424 |
+
if self.downsample:
|
425 |
+
identity = self.conv_downsample(identity)
|
426 |
+
|
427 |
+
out += identity
|
428 |
+
#out = self.mp(out)
|
429 |
+
return out
|
430 |
+
|
431 |
+
|
432 |
+
class Model(nn.Module):
|
433 |
+
def __init__(self, args,device):
|
434 |
+
super().__init__()
|
435 |
+
self.device = device
|
436 |
+
|
437 |
+
# AASIST parameters
|
438 |
+
filts = [128, [1, 32], [32, 32], [32, 64], [64, 64]]
|
439 |
+
gat_dims = [64, 32]
|
440 |
+
pool_ratios = [0.5, 0.5, 0.5, 0.5]
|
441 |
+
temperatures = [2.0, 2.0, 100.0, 100.0]
|
442 |
+
|
443 |
+
|
444 |
+
####
|
445 |
+
# create network wav2vec 2.0
|
446 |
+
####
|
447 |
+
self.ssl_model = SSLModel(self.device)
|
448 |
+
self.LL = nn.Linear(self.ssl_model.out_dim, 128)
|
449 |
+
|
450 |
+
self.first_bn = nn.BatchNorm2d(num_features=1)
|
451 |
+
self.first_bn1 = nn.BatchNorm2d(num_features=64)
|
452 |
+
self.drop = nn.Dropout(0.5, inplace=True)
|
453 |
+
self.drop_way = nn.Dropout(0.2, inplace=True)
|
454 |
+
self.selu = nn.SELU(inplace=True)
|
455 |
+
|
456 |
+
# RawNet2 encoder
|
457 |
+
self.encoder = nn.Sequential(
|
458 |
+
nn.Sequential(Residual_block(nb_filts=filts[1], first=True)),
|
459 |
+
nn.Sequential(Residual_block(nb_filts=filts[2])),
|
460 |
+
nn.Sequential(Residual_block(nb_filts=filts[3])),
|
461 |
+
nn.Sequential(Residual_block(nb_filts=filts[4])),
|
462 |
+
nn.Sequential(Residual_block(nb_filts=filts[4])),
|
463 |
+
nn.Sequential(Residual_block(nb_filts=filts[4])))
|
464 |
+
|
465 |
+
self.attention = nn.Sequential(
|
466 |
+
nn.Conv2d(64, 128, kernel_size=(1,1)),
|
467 |
+
nn.SELU(inplace=True),
|
468 |
+
nn.BatchNorm2d(128),
|
469 |
+
nn.Conv2d(128, 64, kernel_size=(1,1)),
|
470 |
+
|
471 |
+
)
|
472 |
+
# position encoding
|
473 |
+
self.pos_S = nn.Parameter(torch.randn(1, 42, filts[-1][-1]))
|
474 |
+
|
475 |
+
self.master1 = nn.Parameter(torch.randn(1, 1, gat_dims[0]))
|
476 |
+
self.master2 = nn.Parameter(torch.randn(1, 1, gat_dims[0]))
|
477 |
+
|
478 |
+
# Graph module
|
479 |
+
self.GAT_layer_S = GraphAttentionLayer(filts[-1][-1],
|
480 |
+
gat_dims[0],
|
481 |
+
temperature=temperatures[0])
|
482 |
+
self.GAT_layer_T = GraphAttentionLayer(filts[-1][-1],
|
483 |
+
gat_dims[0],
|
484 |
+
temperature=temperatures[1])
|
485 |
+
# HS-GAL layer
|
486 |
+
self.HtrgGAT_layer_ST11 = HtrgGraphAttentionLayer(
|
487 |
+
gat_dims[0], gat_dims[1], temperature=temperatures[2])
|
488 |
+
self.HtrgGAT_layer_ST12 = HtrgGraphAttentionLayer(
|
489 |
+
gat_dims[1], gat_dims[1], temperature=temperatures[2])
|
490 |
+
self.HtrgGAT_layer_ST21 = HtrgGraphAttentionLayer(
|
491 |
+
gat_dims[0], gat_dims[1], temperature=temperatures[2])
|
492 |
+
self.HtrgGAT_layer_ST22 = HtrgGraphAttentionLayer(
|
493 |
+
gat_dims[1], gat_dims[1], temperature=temperatures[2])
|
494 |
+
|
495 |
+
# Graph pooling layers
|
496 |
+
self.pool_S = GraphPool(pool_ratios[0], gat_dims[0], 0.3)
|
497 |
+
self.pool_T = GraphPool(pool_ratios[1], gat_dims[0], 0.3)
|
498 |
+
self.pool_hS1 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
|
499 |
+
self.pool_hT1 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
|
500 |
+
|
501 |
+
self.pool_hS2 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
|
502 |
+
self.pool_hT2 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
|
503 |
+
|
504 |
+
self.out_layer = nn.Linear(5 * gat_dims[1], 2)
|
505 |
+
|
506 |
+
def forward(self, x):
|
507 |
+
#-------pre-trained Wav2vec model fine tunning ------------------------##
|
508 |
+
x_ssl_feat = self.ssl_model.extract_feat(x.squeeze(-1))
|
509 |
+
x = self.LL(x_ssl_feat) #(bs,frame_number,feat_out_dim)
|
510 |
+
|
511 |
+
# post-processing on front-end features
|
512 |
+
x = x.transpose(1, 2) #(bs,feat_out_dim,frame_number)
|
513 |
+
x = x.unsqueeze(dim=1) # add channel
|
514 |
+
x = F.max_pool2d(x, (3, 3))
|
515 |
+
x = self.first_bn(x)
|
516 |
+
x = self.selu(x)
|
517 |
+
|
518 |
+
# RawNet2-based encoder
|
519 |
+
x = self.encoder(x)
|
520 |
+
x = self.first_bn1(x)
|
521 |
+
x = self.selu(x)
|
522 |
+
|
523 |
+
w = self.attention(x)
|
524 |
+
|
525 |
+
#------------SA for spectral feature-------------#
|
526 |
+
w1 = F.softmax(w,dim=-1)
|
527 |
+
m = torch.sum(x * w1, dim=-1)
|
528 |
+
e_S = m.transpose(1, 2) + self.pos_S
|
529 |
+
|
530 |
+
# graph module layer
|
531 |
+
gat_S = self.GAT_layer_S(e_S)
|
532 |
+
out_S = self.pool_S(gat_S) # (#bs, #node, #dim)
|
533 |
+
|
534 |
+
#------------SA for temporal feature-------------#
|
535 |
+
w2 = F.softmax(w,dim=-2)
|
536 |
+
m1 = torch.sum(x * w2, dim=-2)
|
537 |
+
|
538 |
+
e_T = m1.transpose(1, 2)
|
539 |
+
|
540 |
+
# graph module layer
|
541 |
+
gat_T = self.GAT_layer_T(e_T)
|
542 |
+
out_T = self.pool_T(gat_T)
|
543 |
+
|
544 |
+
# learnable master node
|
545 |
+
master1 = self.master1.expand(x.size(0), -1, -1)
|
546 |
+
master2 = self.master2.expand(x.size(0), -1, -1)
|
547 |
+
|
548 |
+
# inference 1
|
549 |
+
out_T1, out_S1, master1 = self.HtrgGAT_layer_ST11(
|
550 |
+
out_T, out_S, master=self.master1)
|
551 |
+
|
552 |
+
out_S1 = self.pool_hS1(out_S1)
|
553 |
+
out_T1 = self.pool_hT1(out_T1)
|
554 |
+
|
555 |
+
out_T_aug, out_S_aug, master_aug = self.HtrgGAT_layer_ST12(
|
556 |
+
out_T1, out_S1, master=master1)
|
557 |
+
out_T1 = out_T1 + out_T_aug
|
558 |
+
out_S1 = out_S1 + out_S_aug
|
559 |
+
master1 = master1 + master_aug
|
560 |
+
|
561 |
+
# inference 2
|
562 |
+
out_T2, out_S2, master2 = self.HtrgGAT_layer_ST21(
|
563 |
+
out_T, out_S, master=self.master2)
|
564 |
+
out_S2 = self.pool_hS2(out_S2)
|
565 |
+
out_T2 = self.pool_hT2(out_T2)
|
566 |
+
|
567 |
+
out_T_aug, out_S_aug, master_aug = self.HtrgGAT_layer_ST22(
|
568 |
+
out_T2, out_S2, master=master2)
|
569 |
+
out_T2 = out_T2 + out_T_aug
|
570 |
+
out_S2 = out_S2 + out_S_aug
|
571 |
+
master2 = master2 + master_aug
|
572 |
+
|
573 |
+
out_T1 = self.drop_way(out_T1)
|
574 |
+
out_T2 = self.drop_way(out_T2)
|
575 |
+
out_S1 = self.drop_way(out_S1)
|
576 |
+
out_S2 = self.drop_way(out_S2)
|
577 |
+
master1 = self.drop_way(master1)
|
578 |
+
master2 = self.drop_way(master2)
|
579 |
+
|
580 |
+
out_T = torch.max(out_T1, out_T2)
|
581 |
+
out_S = torch.max(out_S1, out_S2)
|
582 |
+
master = torch.max(master1, master2)
|
583 |
+
|
584 |
+
# Readout operation
|
585 |
+
T_max, _ = torch.max(torch.abs(out_T), dim=1)
|
586 |
+
T_avg = torch.mean(out_T, dim=1)
|
587 |
+
|
588 |
+
S_max, _ = torch.max(torch.abs(out_S), dim=1)
|
589 |
+
S_avg = torch.mean(out_S, dim=1)
|
590 |
+
|
591 |
+
last_hidden = torch.cat(
|
592 |
+
[T_max, T_avg, S_max, S_avg, master.squeeze(1)], dim=1)
|
593 |
+
|
594 |
+
last_hidden = self.drop(last_hidden)
|
595 |
+
output = self.out_layer(last_hidden)
|
596 |
+
|
597 |
+
return output
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
librosa
|
2 |
+
numpy
|
3 |
+
torch
|
4 |
+
torchaudio
|
5 |
+
git+https://github.com/KhadgaA/fairseq-a54021305d6b3c4c5959ac9395135f63202db8f1.git
|
xlsr2_300m.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b08927597f2c9eb2ebd7dcc3ac78ee4b5f6021cbac4b3a6c5a9deec445d80ed9
|
3 |
+
size 3808868242
|