Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,85 +10,76 @@ st.title("Reddit Scraping & Sentiment Analysis")
|
|
10 |
|
11 |
# --- User Input ---
|
12 |
user_query = st.text_input("Enter search keyword:", value="Monster Hunter Wilds")
|
13 |
-
# Build search query by inserting the user input into quotes and also a variant without spaces
|
14 |
if user_query:
|
15 |
search_query = f'"{user_query}" OR "{user_query.replace(" ", "")}"'
|
16 |
else:
|
17 |
search_query = ""
|
18 |
-
|
19 |
st.write("Search Query:", search_query)
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
reddit = praw.Reddit(
|
34 |
-
client_id=
|
35 |
-
client_secret=
|
36 |
-
user_agent=
|
37 |
)
|
38 |
-
|
39 |
subreddit = reddit.subreddit("all")
|
40 |
-
|
41 |
posts_data = []
|
42 |
-
|
43 |
-
|
44 |
-
# Loop through submissions, update progress bar based on iteration count
|
45 |
for i, submission in enumerate(subreddit.search(search_query, sort="relevance", limit=total_limit)):
|
46 |
-
#
|
47 |
-
progress = (i + 1) / total_limit
|
48 |
-
progress_bar.progress(progress)
|
49 |
-
progress_text.text(f"Scraping... {progress*100:.2f}%")
|
50 |
-
|
51 |
-
# Filtering out posts that appear to be image/video only by checking if title and selftext exist.
|
52 |
if submission.title and submission.selftext:
|
53 |
-
title = submission.title
|
54 |
-
created_utc = submission.created_utc
|
55 |
-
submission_text = submission.selftext
|
56 |
-
|
57 |
-
|
58 |
posts_data.append([
|
59 |
-
title,
|
60 |
-
submission.url,
|
61 |
-
created_utc,
|
62 |
-
|
63 |
])
|
64 |
-
|
65 |
-
time.sleep(0.25)
|
66 |
-
|
67 |
-
progress_text.text("Scraping complete.")
|
68 |
-
|
69 |
-
# Convert the collected posts into a DataFrame
|
70 |
df = pd.DataFrame(posts_data, columns=["Title", "URL", "Date", "Detail"])
|
71 |
-
|
72 |
-
#
|
73 |
def normalize_text(text):
|
74 |
if not isinstance(text, str):
|
75 |
return ""
|
76 |
return re.sub(r'\s+', ' ', text).strip()
|
77 |
|
78 |
-
# Apply normalization to the "Title" and "Detail" columns
|
79 |
for col in ["Title", "Detail"]:
|
80 |
df[col] = df[col].apply(normalize_text)
|
81 |
|
82 |
-
# Filter
|
83 |
df = df[(df["Title"] != "") & (df["Detail"] != "")]
|
84 |
-
|
85 |
-
# Convert Date to datetime, sort descending and reset index
|
86 |
df['Date'] = pd.to_datetime(df['Date'], unit='s')
|
87 |
df = df.sort_values(by="Date", ascending=True).reset_index(drop=True)
|
|
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
progress_text.text(f"Collected {len(df)} valid posts.")
|
90 |
st.session_state["df"] = df
|
91 |
-
|
92 |
# ------------------ Sentiment Analysis Functions ------------------------#
|
93 |
def split_text_by_token_limit(text, tokenizer, max_tokens):
|
94 |
tokens = tokenizer.encode(text, add_special_tokens=False)
|
@@ -99,7 +90,6 @@ if st.button("Scrape and Sentiment Analysis"):
|
|
99 |
chunks.append(chunk_text)
|
100 |
return chunks
|
101 |
|
102 |
-
|
103 |
def safe_sentiment(text):
|
104 |
try:
|
105 |
result = sentiment_pipeline(text)[0]
|
@@ -107,13 +97,12 @@ if st.button("Scrape and Sentiment Analysis"):
|
|
107 |
result = None
|
108 |
return result
|
109 |
|
110 |
-
|
111 |
def analyze_detail(text, tokenizer, sentiment_pipeline, max_tokens):
|
112 |
text = preprocess_text(text)
|
113 |
chunks = split_text_by_token_limit(text, tokenizer, max_tokens)
|
114 |
if not chunks:
|
115 |
return None
|
116 |
-
# Initialize
|
117 |
scores = {"POSITIVE": 0, "NEGATIVE": 0, "NEUTRAL": 0}
|
118 |
for chunk in chunks:
|
119 |
result = safe_sentiment(chunk)
|
@@ -124,36 +113,24 @@ if st.button("Scrape and Sentiment Analysis"):
|
|
124 |
final_label = max(scores, key=lambda k: scores[k])
|
125 |
final_score = scores[final_label]
|
126 |
return {"label": final_label, "score": final_score}
|
127 |
-
|
128 |
-
|
129 |
def preprocess_text(text):
|
130 |
-
|
131 |
-
text = re.sub(r'
|
|
|
132 |
return text
|
133 |
-
|
134 |
#-----------------------------------------------------------------------#
|
135 |
-
|
136 |
-
|
137 |
|
138 |
-
#
|
139 |
with st.spinner("Loading Sentiment Pipeline..."):
|
140 |
-
tokenizer =
|
141 |
-
|
142 |
-
use_auth_token=st.secrets["hugging_face_token"])
|
143 |
-
|
144 |
-
sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, device=-1)
|
145 |
-
st.write("sentiment pipeline loaded...")
|
146 |
-
|
147 |
-
max_tokens = tokenizer.model_max_length
|
148 |
-
if max_tokens > 10000:
|
149 |
-
max_tokens = 512
|
150 |
|
151 |
-
|
152 |
with st.spinner("Doing Sentiment Analysis..."):
|
153 |
-
#
|
154 |
df['title_sentiment'] = df['Title'].apply(lambda x: safe_sentiment(preprocess_text(x)) if x else None)
|
155 |
-
|
156 |
-
# Apply sentiment analysis to Detail by splitting into token-limited chunks and accumulating scores
|
157 |
df['detail_sentiment'] = df['Detail'].apply(lambda x: analyze_detail(x, tokenizer, sentiment_pipeline, max_tokens) if x else None)
|
158 |
|
159 |
df["Title_sentiment_label"] = df["title_sentiment"].apply(lambda x: x["label"] if x else None)
|
@@ -161,62 +138,54 @@ if st.button("Scrape and Sentiment Analysis"):
|
|
161 |
df["Detail_sentiment_label"] = df["detail_sentiment"].apply(lambda x: x["label"] if x else None)
|
162 |
df["Detail_sentiment_score"] = df["detail_sentiment"].apply(lambda x: x["score"] if x else None)
|
163 |
|
|
|
164 |
df = df.drop(["title_sentiment", "detail_sentiment"], axis=1)
|
165 |
-
cols = ["Title", "Title_sentiment_label", "Title_sentiment_score",
|
166 |
-
|
167 |
df = df[cols]
|
168 |
-
|
169 |
st.session_state["df"] = df
|
170 |
|
171 |
-
|
172 |
-
|
173 |
if st.button("Draw Graph"):
|
174 |
df = st.session_state.get("df")
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
ax2.set_title("Detail Sentiment Scores Over Time")
|
218 |
-
ax2.set_xlabel("Time")
|
219 |
-
ax2.set_ylabel("Sentiment Score")
|
220 |
-
ax2.legend()
|
221 |
-
plt.xticks(rotation=45)
|
222 |
-
st.pyplot(fig2)
|
|
|
10 |
|
11 |
# --- User Input ---
|
12 |
user_query = st.text_input("Enter search keyword:", value="Monster Hunter Wilds")
|
|
|
13 |
if user_query:
|
14 |
search_query = f'"{user_query}" OR "{user_query.replace(" ", "")}"'
|
15 |
else:
|
16 |
search_query = ""
|
|
|
17 |
st.write("Search Query:", search_query)
|
18 |
|
19 |
+
# ---------- Cached function for loading the sentiment model pipeline ----------
|
20 |
+
@st.cache_resource
|
21 |
+
def load_sentiment_pipeline():
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
|
23 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
24 |
+
"cardiffnlp/twitter-roberta-base-sentiment-latest",
|
25 |
+
use_auth_token=st.secrets["hugging_face_token"]
|
26 |
+
)
|
27 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, device=-1)
|
28 |
+
max_tokens = tokenizer.model_max_length
|
29 |
+
if max_tokens > 10000:
|
30 |
+
max_tokens = 512
|
31 |
+
return sentiment_pipeline, tokenizer, max_tokens
|
32 |
+
|
33 |
+
# ---------- Cached function for scraping Reddit data ----------
|
34 |
+
@st.cache_data(show_spinner=False)
|
35 |
+
def scrape_reddit_data(search_query, total_limit):
|
36 |
+
# Retrieve API credentials from st.secrets
|
37 |
reddit = praw.Reddit(
|
38 |
+
client_id=st.secrets["reddit_client_id"],
|
39 |
+
client_secret=st.secrets["reddit_client_secret"],
|
40 |
+
user_agent=st.secrets["reddit_user_agent"]
|
41 |
)
|
|
|
42 |
subreddit = reddit.subreddit("all")
|
|
|
43 |
posts_data = []
|
44 |
+
# Iterate over submissions based on the search query and limit
|
|
|
|
|
45 |
for i, submission in enumerate(subreddit.search(search_query, sort="relevance", limit=total_limit)):
|
46 |
+
# No UI updates here as caching does not allow live progress updates
|
|
|
|
|
|
|
|
|
|
|
47 |
if submission.title and submission.selftext:
|
|
|
|
|
|
|
|
|
|
|
48 |
posts_data.append([
|
49 |
+
submission.title,
|
50 |
+
submission.url,
|
51 |
+
submission.created_utc,
|
52 |
+
submission.selftext,
|
53 |
])
|
54 |
+
time.sleep(0.25)
|
|
|
|
|
|
|
|
|
|
|
55 |
df = pd.DataFrame(posts_data, columns=["Title", "URL", "Date", "Detail"])
|
56 |
+
|
57 |
+
# Function to normalize text by replacing multiple spaces/newlines with a single space
|
58 |
def normalize_text(text):
|
59 |
if not isinstance(text, str):
|
60 |
return ""
|
61 |
return re.sub(r'\s+', ' ', text).strip()
|
62 |
|
|
|
63 |
for col in ["Title", "Detail"]:
|
64 |
df[col] = df[col].apply(normalize_text)
|
65 |
|
66 |
+
# Filter out rows with empty Title or Detail
|
67 |
df = df[(df["Title"] != "") & (df["Detail"] != "")]
|
|
|
|
|
68 |
df['Date'] = pd.to_datetime(df['Date'], unit='s')
|
69 |
df = df.sort_values(by="Date", ascending=True).reset_index(drop=True)
|
70 |
+
return df
|
71 |
|
72 |
+
# Button to trigger scraping and sentiment analysis
|
73 |
+
if st.button("Scrape and Sentiment Analysis"):
|
74 |
+
progress_bar = st.progress(0)
|
75 |
+
progress_text = st.empty()
|
76 |
+
|
77 |
+
total_limit = 5000 # Maximum number of submissions to check
|
78 |
+
# Cached scraping; if the same search query is used, cached results are returned
|
79 |
+
df = scrape_reddit_data(search_query, total_limit)
|
80 |
progress_text.text(f"Collected {len(df)} valid posts.")
|
81 |
st.session_state["df"] = df
|
82 |
+
|
83 |
# ------------------ Sentiment Analysis Functions ------------------------#
|
84 |
def split_text_by_token_limit(text, tokenizer, max_tokens):
|
85 |
tokens = tokenizer.encode(text, add_special_tokens=False)
|
|
|
90 |
chunks.append(chunk_text)
|
91 |
return chunks
|
92 |
|
|
|
93 |
def safe_sentiment(text):
|
94 |
try:
|
95 |
result = sentiment_pipeline(text)[0]
|
|
|
97 |
result = None
|
98 |
return result
|
99 |
|
|
|
100 |
def analyze_detail(text, tokenizer, sentiment_pipeline, max_tokens):
|
101 |
text = preprocess_text(text)
|
102 |
chunks = split_text_by_token_limit(text, tokenizer, max_tokens)
|
103 |
if not chunks:
|
104 |
return None
|
105 |
+
# Initialize accumulated scores for each sentiment category
|
106 |
scores = {"POSITIVE": 0, "NEGATIVE": 0, "NEUTRAL": 0}
|
107 |
for chunk in chunks:
|
108 |
result = safe_sentiment(chunk)
|
|
|
113 |
final_label = max(scores, key=lambda k: scores[k])
|
114 |
final_score = scores[final_label]
|
115 |
return {"label": final_label, "score": final_score}
|
116 |
+
|
|
|
117 |
def preprocess_text(text):
|
118 |
+
# Replace URLs and user mentions
|
119 |
+
text = re.sub(r'http\S+', 'http', text)
|
120 |
+
text = re.sub(r'@\w+', '@user', text)
|
121 |
return text
|
|
|
122 |
#-----------------------------------------------------------------------#
|
|
|
|
|
123 |
|
124 |
+
# Load the sentiment pipeline (cached)
|
125 |
with st.spinner("Loading Sentiment Pipeline..."):
|
126 |
+
sentiment_pipeline, tokenizer, max_tokens = load_sentiment_pipeline()
|
127 |
+
st.write("Sentiment pipeline loaded...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
# Perform sentiment analysis
|
130 |
with st.spinner("Doing Sentiment Analysis..."):
|
131 |
+
# Analyze Title sentiment directly (assuming the title is short)
|
132 |
df['title_sentiment'] = df['Title'].apply(lambda x: safe_sentiment(preprocess_text(x)) if x else None)
|
133 |
+
# Analyze Detail sentiment by splitting into token-limited chunks and accumulating scores
|
|
|
134 |
df['detail_sentiment'] = df['Detail'].apply(lambda x: analyze_detail(x, tokenizer, sentiment_pipeline, max_tokens) if x else None)
|
135 |
|
136 |
df["Title_sentiment_label"] = df["title_sentiment"].apply(lambda x: x["label"] if x else None)
|
|
|
138 |
df["Detail_sentiment_label"] = df["detail_sentiment"].apply(lambda x: x["label"] if x else None)
|
139 |
df["Detail_sentiment_score"] = df["detail_sentiment"].apply(lambda x: x["score"] if x else None)
|
140 |
|
141 |
+
# Drop intermediate columns
|
142 |
df = df.drop(["title_sentiment", "detail_sentiment"], axis=1)
|
143 |
+
cols = ["Title", "Title_sentiment_label", "Title_sentiment_score",
|
144 |
+
"Detail", "Detail_sentiment_label", "Detail_sentiment_score", "Date"]
|
145 |
df = df[cols]
|
|
|
146 |
st.session_state["df"] = df
|
147 |
|
148 |
+
# Button to draw graphs
|
|
|
149 |
if st.button("Draw Graph"):
|
150 |
df = st.session_state.get("df")
|
151 |
+
if df is None or df.empty:
|
152 |
+
st.write("Please run 'Scrape and Sentiment Analysis' first.")
|
153 |
+
else:
|
154 |
+
# ------------------- Plot Title's Sentiment Score -------------------#
|
155 |
+
fig1, ax1 = plt.subplots(figsize=(10, 5))
|
156 |
+
# Filter and plot for each sentiment category
|
157 |
+
positive_title = df[df["Title_sentiment_label"].str.lower() == "positive"]
|
158 |
+
negative_title = df[df["Title_sentiment_label"].str.lower() == "negative"]
|
159 |
+
neutral_title = df[df["Title_sentiment_label"].str.lower() == "neutral"]
|
160 |
+
|
161 |
+
ax1.plot(positive_title["Date"], positive_title["Title_sentiment_score"],
|
162 |
+
marker="o", label="Title Positive", color="orange")
|
163 |
+
ax1.plot(negative_title["Date"], negative_title["Title_sentiment_score"],
|
164 |
+
marker="o", label="Title Negative", color="blue")
|
165 |
+
ax1.plot(neutral_title["Date"], neutral_title["Title_sentiment_score"],
|
166 |
+
marker="o", label="Title Neutral", color="yellowgreen")
|
167 |
+
ax1.set_title("Title Sentiment Scores Over Time")
|
168 |
+
ax1.set_xlabel("Time")
|
169 |
+
ax1.set_ylabel("Sentiment Score")
|
170 |
+
ax1.legend()
|
171 |
+
plt.xticks(rotation=45)
|
172 |
+
st.pyplot(fig1)
|
173 |
+
|
174 |
+
# ------------------- Plot Detail's Sentiment Score -------------------#
|
175 |
+
fig2, ax2 = plt.subplots(figsize=(10, 5))
|
176 |
+
positive_detail = df[df["Detail_sentiment_label"].str.lower() == "positive"]
|
177 |
+
negative_detail = df[df["Detail_sentiment_label"].str.lower() == "negative"]
|
178 |
+
neutral_detail = df[df["Detail_sentiment_label"].str.lower() == "neutral"]
|
179 |
+
|
180 |
+
ax2.plot(positive_detail["Date"], positive_detail["Detail_sentiment_score"],
|
181 |
+
marker="+", label="Detail Positive", color="darkorange")
|
182 |
+
ax2.plot(negative_detail["Date"], negative_detail["Detail_sentiment_score"],
|
183 |
+
marker="+", label="Detail Negative", color="navy")
|
184 |
+
ax2.plot(neutral_detail["Date"], neutral_detail["Detail_sentiment_score"],
|
185 |
+
marker="+", label="Detail Neutral", color="forestgreen")
|
186 |
+
ax2.set_title("Detail Sentiment Scores Over Time")
|
187 |
+
ax2.set_xlabel("Time")
|
188 |
+
ax2.set_ylabel("Sentiment Score")
|
189 |
+
ax2.legend()
|
190 |
+
plt.xticks(rotation=45)
|
191 |
+
st.pyplot(fig2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|