Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -27,6 +27,11 @@ from functions import (
|
|
27 |
preprocess_text
|
28 |
)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
30 |
st.title("Reddit Scraping & Sentiment Analysis")
|
31 |
|
32 |
# --- User Input ---
|
@@ -58,7 +63,7 @@ if st.button("Scrape and Sentiment Analysis"):
|
|
58 |
# Perform sentiment analysis
|
59 |
with st.spinner("Doing Sentiment Analysis..."):
|
60 |
# Analyze Title sentiment directly (assuming the title is short)
|
61 |
-
df['title_sentiment'] = df['Title'].apply(lambda x: safe_sentiment(sentiment_pipeline, preprocess_text(x)) if x else None)
|
62 |
# Analyze Detail sentiment by splitting into token-limited chunks and accumulating scores
|
63 |
df['detail_sentiment'] = df['Detail'].apply(lambda x: analyze_detail(x, tokenizer, sentiment_pipeline, max_tokens) if x else None)
|
64 |
|
|
|
27 |
preprocess_text
|
28 |
)
|
29 |
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
st.title("Reddit Scraping & Sentiment Analysis")
|
36 |
|
37 |
# --- User Input ---
|
|
|
63 |
# Perform sentiment analysis
|
64 |
with st.spinner("Doing Sentiment Analysis..."):
|
65 |
# Analyze Title sentiment directly (assuming the title is short)
|
66 |
+
df['title_sentiment'] = df['Title'].apply(lambda x: safe_sentiment(sentiment_pipeline, text=preprocess_text(x)) if x else None)
|
67 |
# Analyze Detail sentiment by splitting into token-limited chunks and accumulating scores
|
68 |
df['detail_sentiment'] = df['Detail'].apply(lambda x: analyze_detail(x, tokenizer, sentiment_pipeline, max_tokens) if x else None)
|
69 |
|