Spaces:
Sleeping
Sleeping
File size: 1,350 Bytes
663913f abc6dd9 663913f abc6dd9 663913f 07b69f6 663913f abc6dd9 720168f abc6dd9 5bb415f 9b5f0ab e31cc72 9b5f0ab e8da7ff 720168f 9b5f0ab abc6dd9 663913f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
import torch
import torchvision.transforms.functional as TF
from model import NeuralNetwork
import json
import os
device = "cuda" if torch.cuda.is_available() else "cpu"
def pokemon_classifier(inp):
model = NeuralNetwork()
model.load_state_dict(torch.load("model_best.pt", map_location=torch.device(device)))
model.eval()
with open('labels.json') as f:
labels = json.load(f)
x = TF.to_tensor(inp)
x = TF.resize(x, (64, 64), antialias=True)
x = x.to(device)
x = x.unsqueeze(0)
with torch.no_grad():
y_pred = model(x)
pokemon = torch.argmax(y_pred, dim=1).item()
return labels[str(pokemon)]
with gr.Blocks() as demo:
gr.Markdown("# Gen 1 Pokemon classifier")
with gr.Column(scale=4):
inp = gr.Image(type="pil")
out = gr.Textbox(label='Pokemon')
gr.Examples(
examples=[
os.path.join(os.path.dirname(__file__), "images/Aerodactyl.jpg"),
os.path.join(os.path.dirname(__file__), "images/Bulbasaur.jpg"),
os.path.join(os.path.dirname(__file__), "images/Charizard.jpg")
],
inputs=inp,
outputs=out,
fn=pokemon_classifier,
cache_examples=False
)
btn = gr.Button("Run")
btn.click(fn=pokemon_classifier, inputs=inp, outputs=out)
demo.launch() |