K-Sort-Arena / model /models /imagenhub_models.py
ksort's picture
init
3427608
raw
history blame
1.64 kB
import imagen_hub
class ImagenHubModel():
def __init__(self, model_name):
self.model = imagen_hub.load(model_name)
def __call__(self, *args, **kwargs):
return self.model.infer_one_image(*args, **kwargs)
class PNP(ImagenHubModel):
def __init__(self):
super().__init__('PNP')
def __call__(self, *args, **kwargs):
if "num_inversion_steps" not in kwargs:
kwargs["num_inversion_steps"] = 200
return super().__call__(*args, **kwargs)
class Prompt2prompt(ImagenHubModel):
def __init__(self):
super().__init__('Prompt2prompt')
def __call__(self, *args, **kwargs):
if "num_inner_steps" not in kwargs:
kwargs["num_inner_steps"] = 3
return super().__call__(*args, **kwargs)
def load_imagenhub_model(model_name, model_type=None):
if model_name == 'PNP':
return PNP()
if model_name == 'Prompt2prompt':
return Prompt2prompt()
return ImagenHubModel(model_name)
# for name in ['DeepFloydIF', 'PixArtAlpha', 'Kandinsky']: #, 'OpenJourney', 'LCM', 'SD' 'SDXL'
# #
# pipe = ImagenHubModel(name)
# result = pipe(prompt='a cute dog is playing a ball')
# print(result)
# for name in ['SD']:
# from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
# import torch
# pipe = DiffusionPipeline.from_pretrained(
# "stabilityai/stable-diffusion-2-base",
# torch_dtype=torch.float16,
# safety_checker=None,
# ).to("cuda")
# pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)