File size: 9,299 Bytes
3427608
 
 
 
 
 
50c662c
3427608
afdb110
3427608
 
b177a48
3427608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99eeb28
0e503f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3427608
 
 
 
 
afdb110
3427608
 
 
 
 
 
 
 
 
 
 
 
 
7b853d0
 
 
94175eb
7b853d0
 
 
 
 
 
 
3427608
 
 
b177a48
 
 
 
 
3427608
 
 
 
 
 
94175eb
7b853d0
 
 
 
 
3427608
 
 
b177a48
 
 
3427608
b177a48
 
 
 
 
 
 
3427608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import concurrent.futures 
import random
import gradio as gr
import requests
import io, base64, json
import spaces
import torch
from PIL import Image
from openai import OpenAI
from .models import IMAGE_GENERATION_MODELS, IMAGE_EDITION_MODELS, load_pipeline
from .fetch_museum_results import draw_from_imagen_museum, draw2_from_imagen_museum
from serve.upload import get_random_mscoco_prompt

class ModelManager:
    def __init__(self):
        self.model_ig_list = IMAGE_GENERATION_MODELS
        self.model_ie_list = IMAGE_EDITION_MODELS
        self.loaded_models = {}

    def load_model_pipe(self, model_name):
        if not model_name in self.loaded_models:
            pipe = load_pipeline(model_name)
            self.loaded_models[model_name] = pipe
        else:
            pipe = self.loaded_models[model_name]
        return pipe
    
    @spaces.GPU(duration=120)
    def generate_image_ig(self, prompt, model_name):
        pipe = self.load_model_pipe(model_name)
        if 'Stable-cascade' not in model_name:
            result = pipe(prompt=prompt).images[0]
        else:
            prior, decoder = pipe
            prior.enable_model_cpu_offload()
            prior_output = prior(
                prompt=prompt,
                height=512,
                width=512,
                negative_prompt='',
                guidance_scale=4.0,
                num_images_per_prompt=1,
                num_inference_steps=20
            )
            decoder.enable_model_cpu_offload()
            result = decoder(
                image_embeddings=prior_output.image_embeddings.to(torch.float16),
                prompt=prompt,
                negative_prompt='',
                guidance_scale=0.0,
                output_type="pil",
                num_inference_steps=10
            ).images[0]
        return result

    def generate_image_ig_api(self, prompt, model_name):
        pipe = self.load_model_pipe(model_name)
        result = pipe(prompt=prompt)
        
        return result

    def generate_image_ig_museum(self, model_name):
        model_name = model_name.split('_')[1]
        result_list = draw_from_imagen_museum("t2i", model_name)
        image_link = result_list[0]
        prompt = result_list[1]

        return image_link, prompt


    def generate_image_ig_parallel_anony(self, prompt, model_A, model_B, model_C, model_D):
        if model_A == "" and model_B == "" and model_C == "" and model_D == "":
            # not_run = [11, 12, 13, 14, 15, 16, 17, 18, 19]
            # filtered_models = [model for i, model in enumerate(self.model_ig_list) if i not in not_run]
            # model_names = random.sample([model for model in filtered_models], 4)

            # model_names = random.sample([model for model in self.model_ig_list], 4)
            
            from .matchmaker import matchmaker
            model_ids = matchmaker(num_players=len(self.model_ig_list))
            print(model_ids)
            model_names = [self.model_ig_list[i] for i in model_ids]
            print(model_names)
        else:
            model_names = [model_A, model_B, model_C, model_D]

        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = [executor.submit(self.generate_image_ig, prompt, model) if model.startswith("huggingface")
                       else executor.submit(self.generate_image_ig_api, prompt, model) for model in model_names]
            results = [future.result() for future in futures]

        return results[0], results[1], results[2], results[3], \
            model_names[0], model_names[1], model_names[2], model_names[3]

    def generate_image_ig_museum_parallel_anony(self, model_A, model_B, model_C, model_D):
        if model_A == "" and model_B == "" and model_C == "" and model_D == "":
            # model_names = random.sample([model for model in self.model_ig_list], 4)

            from .matchmaker import matchmaker
            model_ids = matchmaker(num_players=len(self.model_ig_list))
            print(model_ids)
            model_names = [self.model_ig_list[i] for i in model_ids]
            print(model_names)
        else:
            model_names = [model_A, model_B, model_C, model_D]

        prompt = get_random_mscoco_prompt()
        print(prompt)

        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = [executor.submit(self.generate_image_ig, prompt, model) if model.startswith("huggingface")
                       else executor.submit(self.generate_image_ig_api, prompt, model) for model in model_names]
            results = [future.result() for future in futures]

        return results[0], results[1], results[2], results[3], \
            model_names[0], model_names[1], model_names[2], model_names[3], prompt

    
    def generate_image_ig_parallel(self, prompt, model_A, model_B):
        model_names = [model_A, model_B]
        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = [executor.submit(self.generate_image_ig, prompt, model) if model.startswith("imagenhub")
                       else executor.submit(self.generate_image_ig_api, prompt, model) for model in model_names]
            results = [future.result() for future in futures]
        return results[0], results[1]

    def generate_image_ig_museum_parallel(self, model_A, model_B):
        with concurrent.futures.ThreadPoolExecutor() as executor:
            model_1 = model_A.split('_')[1]
            model_2 = model_B.split('_')[1]
            result_list = draw2_from_imagen_museum("t2i", model_1, model_2)
            image_links = result_list[0]
            prompt_list = result_list[1]
        return image_links[0], image_links[1], prompt_list[0]


    @spaces.GPU(duration=200)
    def generate_image_ie(self, textbox_source, textbox_target, textbox_instruct, source_image, model_name):
        pipe = self.load_model_pipe(model_name)
        result = pipe(src_image = source_image, src_prompt = textbox_source, target_prompt = textbox_target, instruct_prompt = textbox_instruct)
        return result

    def generate_image_ie_museum(self, model_name):
        model_name = model_name.split('_')[1]
        result_list = draw_from_imagen_museum("tie", model_name)
        image_links = result_list[0]
        prompt_list = result_list[1]
        # image_links = [src, model]
        # prompt_list = [source_caption, target_caption, instruction]
        return image_links[0], image_links[1], prompt_list[0], prompt_list[1], prompt_list[2]

    def generate_image_ie_parallel(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B):
        model_names = [model_A, model_B]
        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = [
                executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image,
                                model) for model in model_names]
            results = [future.result() for future in futures]
        return results[0], results[1]

    def generate_image_ie_museum_parallel(self, model_A, model_B):
        model_names = [model_A, model_B]
        with concurrent.futures.ThreadPoolExecutor() as executor:
            model_1 = model_names[0].split('_')[1]
            model_2 = model_names[1].split('_')[1]
            result_list = draw2_from_imagen_museum("tie", model_1, model_2)
            image_links = result_list[0]
            prompt_list = result_list[1]
            # image_links = [src, model_A, model_B]
            # prompt_list = [source_caption, target_caption, instruction]
        return image_links[0], image_links[1], image_links[2], prompt_list[0], prompt_list[1], prompt_list[2]

    def generate_image_ie_parallel_anony(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B):
        if model_A == "" and model_B == "":
            model_names = random.sample([model for model in self.model_ie_list], 2)
        else:
            model_names = [model_A, model_B]
        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = [executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model) for model in model_names]
            results = [future.result() for future in futures]
        return results[0], results[1], model_names[0], model_names[1]

    def generate_image_ie_museum_parallel_anony(self, model_A, model_B):
        if model_A == "" and model_B == "":
            model_names = random.sample([model for model in self.model_ie_list], 2)
        else:
            model_names = [model_A, model_B]
        with concurrent.futures.ThreadPoolExecutor() as executor:
            model_1 = model_names[0].split('_')[1]
            model_2 = model_names[1].split('_')[1]
            result_list = draw2_from_imagen_museum("tie", model_1, model_2)
            image_links = result_list[0]
            prompt_list = result_list[1]
            # image_links = [src, model_A, model_B]
            # prompt_list = [source_caption, target_caption, instruction]
        return image_links[0], image_links[1], image_links[2], prompt_list[0], prompt_list[1], prompt_list[2], model_names[0], model_names[1]


        raise NotImplementedError