Spaces:
Build error
Build error
//adapted from RWKV.cpp repo under MIT license | |
// https://github.com/saharNooby/rwkv.cpp | |
// --- Utilities --- | |
// Checks that x is not false. If x is false, prints fancy message to stderr and returns 0. | |
// Checks that x is not false. If x is false, prints fancy message to stderr and returns NULL. | |
// Reads single int32 value from a file. | |
bool rwkv_v2_read_int32(FILE * file, int32_t * dest) { | |
RWKV_V2_ASSERT_FALSE(fread(dest, 4, 1, file) == 1, "Failed to read an int32 value from a file"); | |
return true; | |
} | |
static const ggml_v2_type FORMAT_TYPE_TO_GGML_V2_TYPE[RWKV_V2_FORMAT_TYPE_COUNT] = { | |
GGML_V2_TYPE_F32, | |
GGML_V2_TYPE_F16, | |
GGML_V2_TYPE_Q4_0, | |
GGML_V2_TYPE_Q4_1, | |
GGML_V2_TYPE_UNKNOWN, // Unused | |
GGML_V2_TYPE_Q4_2, | |
GGML_V2_TYPE_UNKNOWN, // Unused | |
GGML_V2_TYPE_Q5_0, | |
GGML_V2_TYPE_Q5_1, | |
GGML_V2_TYPE_Q8_0 | |
}; | |
static int32_t rwkv_v2_format_name_to_format_type(const char * format_name) { | |
if (strcmp(format_name, "Q4_0") == 0) return 2; | |
if (strcmp(format_name, "Q4_1") == 0) return 3; | |
if (strcmp(format_name, "Q4_2") == 0) return 5; | |
if (strcmp(format_name, "Q5_0") == 0) return 7; | |
if (strcmp(format_name, "Q5_1") == 0) return 8; | |
if (strcmp(format_name, "Q8_0") == 0) return 9; | |
return -1; | |
} | |
// --- Model definition and loading utilities --- | |
struct rwkv_v2_layer { | |
struct ggml_v2_tensor * ln1_weight; | |
struct ggml_v2_tensor * ln1_bias; | |
// RWKV, also called "attention" by the author. | |
struct ggml_v2_tensor * att_time_mix_k; | |
struct ggml_v2_tensor * att_time_mix_v; | |
struct ggml_v2_tensor * att_time_mix_r; | |
struct ggml_v2_tensor * att_time_first; | |
struct ggml_v2_tensor * att_time_decay; | |
struct ggml_v2_tensor * att_key; | |
struct ggml_v2_tensor * att_value; | |
struct ggml_v2_tensor * att_receptance; | |
struct ggml_v2_tensor * att_output; | |
struct ggml_v2_tensor * ln2_weight; | |
struct ggml_v2_tensor * ln2_bias; | |
// FFN. | |
struct ggml_v2_tensor * ffn_time_mix_k; | |
struct ggml_v2_tensor * ffn_time_mix_r; | |
struct ggml_v2_tensor * ffn_key; | |
struct ggml_v2_tensor * ffn_value; | |
struct ggml_v2_tensor * ffn_receptance; | |
}; | |
struct rwkv_v2_model { | |
int32_t n_vocab; | |
int32_t n_layer; | |
int32_t n_embed; | |
// 0 for float32, 1 for float16. | |
int32_t data_type; | |
struct ggml_v2_tensor * emb; | |
struct ggml_v2_tensor * ln0_weight; | |
struct ggml_v2_tensor * ln0_bias; | |
std::vector<rwkv_v2_layer> layers; | |
struct ggml_v2_tensor * ln_out_weight; | |
struct ggml_v2_tensor * ln_out_bias; | |
struct ggml_v2_tensor * head; | |
}; | |
// Finds model parameter by key and sets it into dest. | |
// If the parameter was not found, returns false. | |
bool rwkv_v2_set_parameter(std::unordered_map<std::string, struct ggml_v2_tensor *> * parameters, char * key, struct ggml_v2_tensor ** dest) { | |
struct ggml_v2_tensor * parameter = (*parameters)[key]; | |
RWKV_V2_ASSERT_FALSE(parameter != NULL, "Parameter %s not found in model file", key); | |
*dest = parameter; | |
return true; | |
} | |
// Finds block parameter by block index and key and sets it into dest. | |
// If the parameter was not found, returns false. | |
bool rwkv_v2_set_block_parameter(std::unordered_map<std::string, struct ggml_v2_tensor *> * parameters, int32_t block_index, char * key, struct ggml_v2_tensor ** dest) { | |
char full_key[128]; | |
sprintf(full_key, "blocks.%d.%s", block_index, key); | |
return rwkv_v2_set_parameter(parameters, full_key, dest); | |
} | |
// --- Operators --- | |
void rwkv_v2_exp_impl(const int n_cols, float * dest, const float * src) { | |
for (int i = 0; i < n_cols; i++) { | |
dest[i] = expf(src[i]); | |
} | |
} | |
void rwkv_v2_1_minus_x_impl(const int n_cols, float * dest, const float * src) { | |
for (int i = 0; i < n_cols; i++) { | |
dest[i] = 1.0F - src[i]; | |
} | |
} | |
void rwkv_v2_sigmoid_impl(const int n_cols, float * dest, const float * src) { | |
for (int i = 0; i < n_cols; i++) { | |
dest[i] = 1.0F / (1.0F + expf(-src[i])); | |
} | |
} | |
void rwkv_v2_max_impl(const int n_cols, float * dest, const float * src0, const float * src1) { | |
for (int i = 0; i < n_cols; i++) { | |
dest[i] = fmaxf(src0[i], src1[i]); | |
} | |
} | |
struct ggml_v2_tensor * rwkv_v2_exp(ggml_v2_context * ctx, struct ggml_v2_tensor * x) { | |
return ggml_v2_map_unary_f32(ctx, x, rwkv_v2_exp_impl); | |
} | |
struct ggml_v2_tensor * rwkv_v2_1_minus_x(ggml_v2_context * ctx, struct ggml_v2_tensor * x) { | |
return ggml_v2_map_unary_f32(ctx, x, rwkv_v2_1_minus_x_impl); | |
} | |
struct ggml_v2_tensor * rwkv_v2_sigmoid(ggml_v2_context * ctx, struct ggml_v2_tensor * x) { | |
return ggml_v2_map_unary_f32(ctx, x, rwkv_v2_sigmoid_impl); | |
} | |
struct ggml_v2_tensor * rwkv_v2_max(ggml_v2_context * ctx, struct ggml_v2_tensor * x, struct ggml_v2_tensor * y) { | |
return ggml_v2_map_binary_f32(ctx, x, y, rwkv_v2_max_impl); | |
} | |
struct ggml_v2_tensor * rwkv_v2_layer_norm(ggml_v2_context * ctx, struct ggml_v2_tensor * x, struct ggml_v2_tensor * weight, struct ggml_v2_tensor * bias) { | |
// LayerNorm in RWKV is `x = (x - mean(x)) / sqrt(variance(x) + 1e-5) * weight + bias` | |
// Looks like ggml_v2_norm does the first part, we only need to apply weight & bias. | |
x = ggml_v2_norm(ctx, x); | |
x = ggml_v2_mul(ctx, x, weight); | |
x = ggml_v2_add(ctx, x, bias); | |
return x; | |
} | |
// --- Implementation --- | |
struct rwkv_v2_context { | |
struct rwkv_v2_model * model; | |
struct ggml_v2_tensor * token_index; | |
struct ggml_v2_tensor * state; | |
struct ggml_v2_tensor ** state_parts; | |
struct ggml_v2_tensor * logits; | |
struct ggml_v2_context * ctx; | |
struct ggml_v2_cgraph * graph; | |
bool freed; | |
float * state_in = 0; //stores input state, or use null for a new state | |
float * state_out = 0; //stores address of output state buffer | |
float * logits_out = 0; //stores address of output logit buffer | |
}; | |
struct rwkv_v2_context * rwkv_v2_init_from_file(const char * file_path, uint32_t n_threads) { | |
FILE * file = fopen(file_path, "rb"); | |
RWKV_V2_ASSERT_NULL(file != NULL, "Failed to open file %s", file_path); | |
int32_t magic; | |
rwkv_v2_read_int32(file, &magic); | |
RWKV_V2_ASSERT_NULL(magic == RWKV_V2_FILE_MAGIC, "Unexpected magic value %d", magic); | |
int32_t version; | |
rwkv_v2_read_int32(file, &version); | |
RWKV_V2_ASSERT_NULL(version == RWKV_V2_FILE_VERSION, "Unsupported file version %d", version); | |
struct rwkv_v2_model * model = (struct rwkv_v2_model *) calloc(1, sizeof(struct rwkv_v2_model)); | |
rwkv_v2_read_int32(file, &(model->n_vocab)); | |
RWKV_V2_ASSERT_NULL(model->n_vocab > 0, "Non-positive n_vocab %d", model->n_vocab); | |
rwkv_v2_read_int32(file, &(model->n_embed)); | |
RWKV_V2_ASSERT_NULL(model->n_embed > 0, "Non-positive n_embed %d", model->n_embed); | |
rwkv_v2_read_int32(file, &(model->n_layer)); | |
RWKV_V2_ASSERT_NULL(model->n_layer > 0, "Non-positive n_layer %d", model->n_layer); | |
rwkv_v2_read_int32(file, &(model->data_type)); | |
RWKV_V2_ASSERT_NULL(model->data_type >= 0 && model->data_type < RWKV_V2_FORMAT_TYPE_COUNT, "Unsupported model data type %d", model->data_type); | |
RWKV_V2_ASSERT_NULL( | |
model->data_type != 4, | |
"Models in Q4_1_O format cannot be loaded anymore because the format was removed. You need to quantize the model into another format" | |
); | |
RWKV_V2_ASSERT_NULL( | |
model->data_type != 6, | |
"Models in Q4_3 format cannot be loaded anymore because the format was removed. You need to quantize the model into another format" | |
); | |
// Parameter tensors would take at least this amount in memory. | |
size_t file_size; | |
{ | |
auto fin = std::ifstream(file_path, std::ios::binary); | |
RWKV_V2_ASSERT_NULL(fin, "Failed to open file %s", file_path); | |
fin.seekg(0, fin.end); | |
file_size = fin.tellg(); | |
fin.close(); | |
} | |
size_t memory_required = file_size + | |
// Intermediary vectors for calculation; there are around 100 calls to ggml | |
size_t(100) * model->n_embed * sizeof(float) + | |
// State, in and out | |
size_t(2) * 5 * model->n_layer * model->n_embed * sizeof(float) + | |
// Logits | |
size_t(model->n_vocab) * sizeof(float) + | |
// +256 MB just for any overhead | |
// TODO This is too much for smaller models; need a more proper and robust way of measuring required memory | |
size_t(256) * 1024 * 1024; | |
// Initialize ggml | |
struct ggml_v2_init_params params; | |
params.mem_size = memory_required; | |
params.mem_buffer = NULL; | |
params.no_alloc = false; | |
struct ggml_v2_context * ctx = ggml_v2_init(params); | |
std::unordered_map<std::string, struct ggml_v2_tensor *> parameters; | |
while (true) { | |
int32_t dim_count; | |
size_t elements_read = fread(&dim_count, 4, 1, file); | |
if (feof(file)) { | |
break; | |
} | |
RWKV_V2_ASSERT_NULL(elements_read == 1, "Failed to read dimension count"); | |
RWKV_V2_ASSERT_NULL(dim_count == 1 || dim_count == 2, "Unsupported dimension count %d", dim_count); | |
int32_t key_length; | |
rwkv_v2_read_int32(file, &key_length); | |
RWKV_V2_ASSERT_NULL(key_length > 0, "Non-positive key length %d", key_length); | |
int32_t data_type; | |
rwkv_v2_read_int32(file, &data_type); | |
RWKV_V2_ASSERT_NULL(data_type >= 0 && data_type < RWKV_V2_FORMAT_TYPE_COUNT, "Unsupported parameter data type %d", data_type); | |
ggml_v2_type ggml_v2_data_type = FORMAT_TYPE_TO_GGML_V2_TYPE[data_type]; | |
RWKV_V2_ASSERT_NULL(ggml_v2_data_type != GGML_V2_TYPE_UNKNOWN, "Unsupported parameter data type %d", data_type); | |
struct ggml_v2_tensor * tensor; | |
int32_t x = -1; | |
int32_t y = -1; | |
if (dim_count == 1) { | |
rwkv_v2_read_int32(file, &x); | |
tensor = ggml_v2_new_tensor_1d(ctx, ggml_v2_data_type, x); | |
} else if (dim_count == 2) { | |
rwkv_v2_read_int32(file, &x); | |
rwkv_v2_read_int32(file, &y); | |
tensor = ggml_v2_new_tensor_2d(ctx, ggml_v2_data_type, x, y); | |
} else { | |
abort(); | |
} | |
std::string key(key_length, 0); | |
RWKV_V2_ASSERT_NULL(fread(&key[0], 1, key_length, file) == uint32_t(key_length), "Failed to read parameter key"); | |
RWKV_V2_ASSERT_NULL(fread(tensor->data, 1, ggml_v2_nbytes(tensor), file) == ggml_v2_nbytes(tensor), "Failed to read parameter data"); | |
parameters[key] = tensor; | |
} | |
fclose(file); | |
model->layers.resize(model->n_layer); | |
rwkv_v2_set_parameter(¶meters, "emb.weight", &(model->emb)); | |
rwkv_v2_set_parameter(¶meters, "blocks.0.ln0.weight", &(model->ln0_weight)); | |
rwkv_v2_set_parameter(¶meters, "blocks.0.ln0.bias", &(model->ln0_bias)); | |
for (int i = 0; i < model->n_layer; i++) { | |
rwkv_v2_layer layer = model->layers[i]; | |
rwkv_v2_set_block_parameter(¶meters, i, "ln1.weight", &(layer.ln1_weight)); | |
rwkv_v2_set_block_parameter(¶meters, i, "ln1.bias", &(layer.ln1_bias)); | |
rwkv_v2_set_block_parameter(¶meters, i, "att.time_mix_k", &(layer.att_time_mix_k)); | |
rwkv_v2_set_block_parameter(¶meters, i, "att.time_mix_v", &(layer.att_time_mix_v)); | |
rwkv_v2_set_block_parameter(¶meters, i, "att.time_mix_r", &(layer.att_time_mix_r)); | |
rwkv_v2_set_block_parameter(¶meters, i, "att.time_first", &(layer.att_time_first)); | |
rwkv_v2_set_block_parameter(¶meters, i, "att.time_decay", &(layer.att_time_decay)); | |
rwkv_v2_set_block_parameter(¶meters, i, "att.key.weight", &(layer.att_key)); | |
rwkv_v2_set_block_parameter(¶meters, i, "att.value.weight", &(layer.att_value)); | |
rwkv_v2_set_block_parameter(¶meters, i, "att.receptance.weight", &(layer.att_receptance)); | |
rwkv_v2_set_block_parameter(¶meters, i, "att.output.weight", &(layer.att_output)); | |
rwkv_v2_set_block_parameter(¶meters, i, "ln2.weight", &(layer.ln2_weight)); | |
rwkv_v2_set_block_parameter(¶meters, i, "ln2.bias", &(layer.ln2_bias)); | |
rwkv_v2_set_block_parameter(¶meters, i, "ffn.time_mix_k", &(layer.ffn_time_mix_k)); | |
rwkv_v2_set_block_parameter(¶meters, i, "ffn.time_mix_r", &(layer.ffn_time_mix_r)); | |
rwkv_v2_set_block_parameter(¶meters, i, "ffn.key.weight", &(layer.ffn_key)); | |
rwkv_v2_set_block_parameter(¶meters, i, "ffn.value.weight", &(layer.ffn_value)); | |
rwkv_v2_set_block_parameter(¶meters, i, "ffn.receptance.weight", &(layer.ffn_receptance)); | |
model->layers[i] = layer; | |
} | |
rwkv_v2_set_parameter(¶meters, "ln_out.weight", &(model->ln_out_weight)); | |
rwkv_v2_set_parameter(¶meters, "ln_out.bias", &(model->ln_out_bias)); | |
rwkv_v2_set_parameter(¶meters, "head.weight", &(model->head)); | |
// Verify order of dimensions | |
struct ggml_v2_tensor * emb = model->emb; | |
RWKV_V2_ASSERT_NULL(emb->n_dims == 2, "Unexpected dimension count of embedding matrix %d", emb->n_dims); | |
RWKV_V2_ASSERT_NULL(emb->ne[0] == model->n_embed, "Unexpected dimension of embedding matrix %lld", emb->ne[0]); | |
RWKV_V2_ASSERT_NULL(emb->ne[1] == model->n_vocab, "Unexpected dimension of embedding matrix %lld", emb->ne[1]); | |
int32_t n_embed = model->n_embed; | |
int32_t n_layer = model->n_layer; | |
// Build graph | |
struct ggml_v2_tensor * state = ggml_v2_new_tensor_1d(ctx, GGML_V2_TYPE_F32, n_layer * 5 * n_embed); | |
// x = self.w.emb.weight[token] | |
struct ggml_v2_tensor * token_index = ggml_v2_new_tensor_1d(ctx, GGML_V2_TYPE_I32, 1); | |
struct ggml_v2_tensor * x = ggml_v2_get_rows(ctx, model->emb, token_index); | |
// x = self.layer_norm(x, self.w.blocks[0].ln0) | |
x = rwkv_v2_layer_norm(ctx, x, model->ln0_weight, model->ln0_bias); | |
// We collect parts of new state here. Each part is (n_embed) vector. | |
struct ggml_v2_tensor ** state_parts = new ggml_v2_tensor * [n_layer * 5]; | |
for (int i = 0; i < n_layer; i++) { | |
auto layer = model->layers[i]; | |
// RWKV/time mixing | |
{ | |
// self.layer_norm(x, self.w.blocks[i].ln1) | |
struct ggml_v2_tensor * x0 = rwkv_v2_layer_norm(ctx, x, layer.ln1_weight, layer.ln1_bias); | |
// state[5 * i + 1] | |
struct ggml_v2_tensor * x_prev = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 1) * n_embed * sizeof(float)); | |
// xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k) | |
// xv = x * time_mix_v + state[5 * i + 1] * (1 - time_mix_v) | |
// xr = x * time_mix_r + state[5 * i + 1] * (1 - time_mix_r) | |
struct ggml_v2_tensor * xk = ggml_v2_add( | |
ctx, | |
ggml_v2_mul(ctx, x0, layer.att_time_mix_k), | |
ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.att_time_mix_k)) | |
); | |
struct ggml_v2_tensor * xv = ggml_v2_add( | |
ctx, | |
ggml_v2_mul(ctx, x0, layer.att_time_mix_v), | |
ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.att_time_mix_v)) | |
); | |
struct ggml_v2_tensor * xr = ggml_v2_add( | |
ctx, | |
ggml_v2_mul(ctx, x0, layer.att_time_mix_r), | |
ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.att_time_mix_r)) | |
); | |
// state[5 * i + 1] = x | |
state_parts[5 * i + 1] = x0; | |
// r = torch.sigmoid(rw @ xr) | |
struct ggml_v2_tensor * r = rwkv_v2_sigmoid( | |
ctx, | |
ggml_v2_mul_mat(ctx, layer.att_receptance, xr) | |
); | |
// k = kw @ xk | |
struct ggml_v2_tensor * k = ggml_v2_mul_mat(ctx, layer.att_key, xk); | |
// v = vw @ xv | |
struct ggml_v2_tensor * v = ggml_v2_mul_mat(ctx, layer.att_value, xv); | |
// aa = state[5 * i + 2] | |
// bb = state[5 * i + 3] | |
// pp = state[5 * i + 4] | |
struct ggml_v2_tensor * aa = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 2) * n_embed * sizeof(float)); | |
struct ggml_v2_tensor * bb = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 3) * n_embed * sizeof(float)); | |
struct ggml_v2_tensor * pp = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 4) * n_embed * sizeof(float)); | |
// ww = time_first + k | |
struct ggml_v2_tensor * ww = ggml_v2_add(ctx, layer.att_time_first, k); | |
// qq = torch.maximum(pp, ww) | |
struct ggml_v2_tensor * qq = rwkv_v2_max(ctx, pp, ww); | |
// e1 = torch.exp(pp - qq) | |
struct ggml_v2_tensor * e1 = rwkv_v2_exp(ctx, ggml_v2_sub(ctx, pp, qq)); | |
// e2 = torch.exp(ww - qq) | |
struct ggml_v2_tensor * e2 = rwkv_v2_exp(ctx, ggml_v2_sub(ctx, ww, qq)); | |
// a = e1 * aa + e2 * v | |
struct ggml_v2_tensor * a = ggml_v2_add( | |
ctx, | |
ggml_v2_mul(ctx, e1, aa), | |
ggml_v2_mul(ctx, e2, v) | |
); | |
// b = e1 * bb + e2 | |
struct ggml_v2_tensor * b = ggml_v2_add( | |
ctx, | |
ggml_v2_mul(ctx, e1, bb), | |
e2 | |
); | |
// wkv = a / b | |
struct ggml_v2_tensor * wkv = ggml_v2_div(ctx, a, b); | |
// ww = pp + time_decay | |
ww = ggml_v2_add(ctx, pp, layer.att_time_decay); | |
// qq = torch.maximum(ww, k) | |
qq = rwkv_v2_max(ctx, ww, k); | |
// e1 = torch.exp(ww - qq) | |
e1 = rwkv_v2_exp(ctx, ggml_v2_sub(ctx, ww, qq)); | |
// e2 = torch.exp(k - qq) | |
e2 = rwkv_v2_exp(ctx, ggml_v2_sub(ctx, k, qq)); | |
// state[5 * i + 2] = e1 * aa + e2 * v | |
state_parts[5 * i + 2] = ggml_v2_add( | |
ctx, | |
ggml_v2_mul(ctx, e1, aa), | |
ggml_v2_mul(ctx, e2, v) | |
); | |
// state[5 * i + 3] = e1 * bb + e2 | |
state_parts[5 * i + 3] = ggml_v2_add( | |
ctx, | |
ggml_v2_mul(ctx, e1, bb), | |
e2 | |
); | |
// state[5 * i + 4] = qq | |
state_parts[5 * i + 4] = qq; | |
// ow @ (r * wkv) | |
x = ggml_v2_add( | |
ctx, | |
x, | |
ggml_v2_mul_mat( | |
ctx, | |
layer.att_output, | |
ggml_v2_mul(ctx, r, wkv) | |
) | |
); | |
} | |
// FFN/channel mixing | |
{ | |
// self.layer_norm(x, self.w.blocks[i].ln2) | |
struct ggml_v2_tensor * x0 = rwkv_v2_layer_norm(ctx, x, layer.ln2_weight, layer.ln2_bias); | |
// state[5 * i + 0] | |
struct ggml_v2_tensor * x_prev = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 0) * n_embed * sizeof(float)); | |
// xk = x * time_mix_k + state[5 * i + 0] * (1 - time_mix_k) | |
// xr = x * time_mix_r + state[5 * i + 0] * (1 - time_mix_r) | |
struct ggml_v2_tensor * xk = ggml_v2_add( | |
ctx, | |
ggml_v2_mul(ctx, x0, layer.ffn_time_mix_k), | |
ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.ffn_time_mix_k)) | |
); | |
struct ggml_v2_tensor * xr = ggml_v2_add( | |
ctx, | |
ggml_v2_mul(ctx, x0, layer.ffn_time_mix_r), | |
ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.ffn_time_mix_r)) | |
); | |
// state[5 * i + 0] = x | |
state_parts[5 * i + 0] = x0; | |
// r = torch.sigmoid(rw @ xr) | |
struct ggml_v2_tensor * r = rwkv_v2_sigmoid( | |
ctx, | |
ggml_v2_mul_mat(ctx, layer.ffn_receptance, xr) | |
); | |
// k = torch.square(torch.relu(kw @ xk)) | |
struct ggml_v2_tensor * k = ggml_v2_sqr(ctx, ggml_v2_relu( | |
ctx, | |
ggml_v2_mul_mat(ctx, layer.ffn_key, xk) | |
)); | |
// r * (vw @ k) | |
x = ggml_v2_add( | |
ctx, | |
x, | |
ggml_v2_mul( | |
ctx, | |
r, | |
ggml_v2_mul_mat(ctx, layer.ffn_value, k) | |
) | |
); | |
} | |
} | |
// x = self.layer_norm(x, self.w.ln_out) | |
x = rwkv_v2_layer_norm(ctx, x, model->ln_out_weight, model->ln_out_bias); | |
// x = (self.w.head.weight @ x).float() | |
struct ggml_v2_tensor * logits = ggml_v2_mul_mat(ctx, model->head, x); | |
struct ggml_v2_cgraph * graph = (struct ggml_v2_cgraph *) calloc(1, sizeof(struct ggml_v2_cgraph)); | |
*graph = ggml_v2_build_forward(logits); | |
for (int i = 0; i < n_layer * 5; i++) { | |
ggml_v2_build_forward_expand(graph, state_parts[i]); | |
} | |
graph->n_threads = n_threads; | |
struct rwkv_v2_context * rwkv_ctx = (struct rwkv_v2_context *) calloc(1, sizeof(struct rwkv_v2_context)); | |
rwkv_ctx->model = model; | |
rwkv_ctx->token_index = token_index; | |
rwkv_ctx->state = state; | |
rwkv_ctx->state_parts = state_parts; | |
rwkv_ctx->logits = logits; | |
rwkv_ctx->ctx = ctx; | |
rwkv_ctx->graph = graph; | |
return rwkv_ctx; | |
} | |
uint32_t rwkv_v2_get_state_buffer_element_count(struct rwkv_v2_context * ctx) { | |
return ctx->model->n_layer * 5 * ctx->model->n_embed; | |
} | |
uint32_t rwkv_v2_get_logits_buffer_element_count(struct rwkv_v2_context * ctx) { | |
return ctx->model->n_vocab; | |
} | |
bool rwkv_v2_eval(struct rwkv_v2_context * ctx, int32_t token, float * state_in, float * state_out, float * logits_out) { | |
RWKV_V2_ASSERT_FALSE(state_out != NULL, "state_out is NULL"); | |
RWKV_V2_ASSERT_FALSE(logits_out != NULL, "logits_out is NULL"); | |
int32_t n_layer = ctx->model->n_layer; | |
int32_t n_embed = ctx->model->n_embed; | |
int32_t n_vocab = ctx->model->n_vocab; | |
RWKV_V2_ASSERT_FALSE(token >= 0 && token < n_vocab, "Token is out of range 0..%d", n_vocab - 1); | |
ggml_v2_set_i32_1d(ctx->token_index, 0, token); | |
if (state_in == NULL) { | |
ggml_v2_set_f32(ctx->state, 0.0F); | |
for (int i = 0; i < n_layer; i++) { | |
// state[5 * i + 4] = -1e30 | |
ggml_v2_set_f32( | |
ggml_v2_view_1d(ctx->ctx, ctx->state, n_embed, (5 * i + 4) * n_embed * sizeof(float)), | |
-1e30F | |
); | |
} | |
} else { | |
memcpy(ctx->state->data, state_in, ctx->state->ne[0] * sizeof(float)); | |
} | |
ggml_v2_graph_compute(ctx->ctx, ctx->graph); | |
for (size_t i = 0; i < size_t(n_layer * 5); i++) { | |
struct ggml_v2_tensor * part = ctx->state_parts[i]; | |
memcpy(state_out + i * n_embed, part->data, part->ne[0] * sizeof(float)); | |
} | |
memcpy(logits_out, ctx->logits->data, ctx->logits->ne[0] * sizeof(float)); | |
return true; | |
} | |
void rwkv_v2_free(struct rwkv_v2_context * ctx) { | |
ctx->model->layers.~vector(); | |
free(ctx->model); | |
delete[] ctx->state_parts; | |
ggml_v2_free(ctx->ctx); | |
free(ctx->graph); | |
free(ctx); | |
} | |
bool rwkv_v2_quantize_model_file(const char * model_file_path_in, const char * model_file_path_out, const char * format_name) { | |
int32_t format_type = rwkv_v2_format_name_to_format_type(format_name); | |
RWKV_V2_ASSERT_FALSE(format_type != -1, "Unsupported format \"%s\"", format_name); | |
ggml_v2_type type = FORMAT_TYPE_TO_GGML_V2_TYPE[format_type]; | |
RWKV_V2_ASSERT_FALSE(type != GGML_V2_TYPE_UNKNOWN, "Unsupported format \"%s\"", format_name); | |
// Needed to initialize FP16 lookup table | |
{ | |
struct ggml_v2_init_params params = { 0, NULL, false }; | |
struct ggml_v2_context * ctx = ggml_v2_init(params); | |
ggml_v2_free(ctx); | |
} | |
printf("Loading model from '%s'\n", model_file_path_in); | |
auto finp = std::ifstream(model_file_path_in, std::ios::binary); | |
RWKV_V2_ASSERT_FALSE(finp, "Failed to open %s for reading", model_file_path_in); | |
auto fout = std::ofstream(model_file_path_out, std::ios::binary); | |
RWKV_V2_ASSERT_FALSE(fout, "Failed to open %s for writing", model_file_path_out); | |
// Process header | |
{ | |
uint32_t magic; | |
finp.read((char *) &magic, sizeof(magic)); | |
RWKV_V2_ASSERT_FALSE(magic == RWKV_V2_FILE_MAGIC, "Unexpected magic value %d", magic); | |
fout.write((char *) &magic, sizeof(magic)); | |
uint32_t format_version; | |
finp.read((char *) &format_version, sizeof(format_version)); | |
RWKV_V2_ASSERT_FALSE(format_version == RWKV_V2_FILE_VERSION, "Unsupported file version %d", format_version); | |
fout.write((char *) &format_version, sizeof(format_version)); | |
int32_t n_vocab; | |
int32_t n_embed; | |
int32_t n_layer; | |
int32_t data_type; | |
finp.read((char *) &n_vocab, sizeof(n_vocab)); | |
finp.read((char *) &n_embed, sizeof(n_embed)); | |
finp.read((char *) &n_layer, sizeof(n_layer)); | |
finp.read((char *) &data_type, sizeof(data_type)); | |
RWKV_V2_ASSERT_FALSE(data_type == 0 || data_type == 1, "Unsupported data type %d, only FP32 and FP16 can be quantized", data_type); | |
data_type = format_type; | |
fout.write((char *) &n_vocab, sizeof(n_vocab)); | |
fout.write((char *) &n_embed, sizeof(n_embed)); | |
fout.write((char *) &n_layer, sizeof(n_layer)); | |
fout.write((char *) &data_type, sizeof(data_type)); | |
} | |
// Process parameters | |
{ | |
size_t total_size_orig = 0; | |
size_t total_size_new = 0; | |
std::vector<float> work; | |
std::vector<uint8_t> data_u8; | |
std::vector<ggml_v2_fp16_t> data_f16; | |
std::vector<float> data_f32; | |
std::vector<int64_t> hist_all(1 << 4, 0); | |
while (true) { | |
int32_t n_dims; | |
int32_t key_length; | |
int32_t parameter_data_type; | |
finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); | |
finp.read(reinterpret_cast<char *>(&key_length), sizeof(key_length)); | |
finp.read(reinterpret_cast<char *>(¶meter_data_type), sizeof(parameter_data_type)); | |
if (finp.eof()) { | |
break; | |
} | |
RWKV_V2_ASSERT_FALSE(parameter_data_type >= 0 && parameter_data_type < RWKV_V2_FORMAT_TYPE_COUNT, "Invalid parameter data type %d", parameter_data_type); | |
ggml_v2_type parameter_ggml_v2_type = FORMAT_TYPE_TO_GGML_V2_TYPE[parameter_data_type]; | |
RWKV_V2_ASSERT_FALSE(parameter_ggml_v2_type != GGML_V2_TYPE_UNKNOWN, "Invalid parameter data type %d", parameter_data_type); | |
int32_t nelements = 1; | |
int32_t ne[2] = { 1, 1 }; | |
for (int i = 0; i < n_dims; ++i) { | |
finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); | |
nelements *= ne[i]; | |
} | |
std::string name(key_length, 0); | |
finp.read(&name[0], key_length); | |
{ | |
printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ggml_v2_type_name(parameter_ggml_v2_type)); | |
total_size_orig += (size_t) (nelements * ggml_v2_type_sizef(parameter_ggml_v2_type)); | |
} | |
// Quantize only 2D tensors, except embedding and head matrices. | |
// Embedding and head take not too much space, especially in bigger models; | |
// but they significantly increase perplexity when quantized. | |
bool quantize = n_dims == 2 && | |
name != std::string("emb.weight") && | |
name != std::string("head.weight"); | |
if (quantize) { | |
RWKV_V2_ASSERT_FALSE( | |
parameter_data_type == 0 || parameter_data_type == 1, | |
"Unsupported parameter data type %d, only FP32 and FP16 can be quantized", | |
parameter_data_type | |
); | |
if (parameter_data_type == 1) { | |
data_f16.resize(nelements); | |
finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_v2_fp16_t)); | |
data_f32.resize(nelements); | |
for (int i = 0; i < nelements; ++i) { | |
data_f32[i] = ggml_v2_fp16_to_fp32(data_f16[i]); | |
} | |
} else { | |
data_f32.resize(nelements); | |
finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float)); | |
} | |
parameter_data_type = format_type; | |
} else { | |
const int bytes_per_element = (parameter_data_type == 0) ? sizeof(float) : sizeof(uint16_t); | |
data_u8.resize(nelements * bytes_per_element); | |
finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bytes_per_element); | |
} | |
fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); | |
fout.write(reinterpret_cast<char *>(&key_length), sizeof(key_length)); | |
fout.write(reinterpret_cast<char *>(¶meter_data_type), sizeof(parameter_data_type)); | |
for (int i = 0; i < n_dims; ++i) { | |
fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); | |
} | |
fout.write(&name[0], key_length); | |
if (quantize) { | |
printf("quantizing... "); | |
work.resize(nelements); // for quantization | |
size_t cur_size = 0; | |
// This is a histogramm of some values. If it shows single 1.0, then all 0.0, something went very wrong! | |
std::vector<int64_t> hist_cur(1 << 4, 0); | |
switch (type) { | |
case GGML_V2_TYPE_Q4_0: | |
cur_size = ggml_v2_quantize_q4_0_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data()); | |
break; | |
case GGML_V2_TYPE_Q4_1: | |
cur_size = ggml_v2_quantize_q4_1_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data()); | |
break; | |
case GGML_V2_TYPE_Q4_2: | |
cur_size = ggml_v2_quantize_q4_2_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data()); | |
break; | |
case GGML_V2_TYPE_Q5_0: | |
cur_size = ggml_v2_quantize_q5_0_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data()); | |
break; | |
case GGML_V2_TYPE_Q5_1: | |
cur_size = ggml_v2_quantize_q5_1_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data()); | |
break; | |
case GGML_V2_TYPE_Q8_0: | |
cur_size = ggml_v2_quantize_q8_0_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data()); | |
break; | |
default: { | |
fprintf(stderr, "unsupported quantization type %d\n", type); | |
return false; | |
} | |
} | |
fout.write(reinterpret_cast<char *>(work.data()), cur_size); | |
total_size_new += cur_size; | |
printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float) / 1024.0 / 1024.0, cur_size / 1024.0 / 1024.0); | |
for (int i = 0; i < (int) hist_cur.size(); ++i) { | |
hist_all[i] += hist_cur[i]; | |
} | |
for (int i = 0; i < (int) hist_cur.size(); ++i) { | |
printf("%5.3f ", hist_cur[i] / float(nelements)); | |
} | |
printf("\n"); | |
} else { | |
printf("size = %8.3f MB\n", data_u8.size() / 1024.0 / 1024.0); | |
fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size()); | |
total_size_new += data_u8.size(); | |
} | |
} | |
printf("original size = %8.2f MB\n", total_size_orig / 1024.0 / 1024.0); | |
printf("quantized size = %8.2f MB\n", total_size_new / 1024.0 / 1024.0); | |
printf("compression ratio = %8.2f\n", 1.0 * total_size_orig / total_size_new); | |
{ | |
int64_t sum_all = 0; | |
for (int i = 0; i < (int) hist_all.size(); ++i) { | |
sum_all += hist_all[i]; | |
} | |
printf("hist: "); | |
for (int i = 0; i < (int) hist_all.size(); ++i) { | |
printf("%5.3f ", hist_all[i] / float(sum_all)); | |
} | |
printf("\n"); | |
} | |
} | |
finp.close(); | |
fout.close(); | |
return true; | |
} | |
const char * rwkv_v2_get_system_info_string(void) { | |
static std::string s; | |
s = ""; | |
s += "AVX = " + std::to_string(ggml_v2_cpu_has_avx()) + " | "; | |
s += "AVX2 = " + std::to_string(ggml_v2_cpu_has_avx2()) + " | "; | |
s += "AVX512 = " + std::to_string(ggml_v2_cpu_has_avx512()) + " | "; | |
s += "FMA = " + std::to_string(ggml_v2_cpu_has_fma()) + " | "; | |
s += "NEON = " + std::to_string(ggml_v2_cpu_has_neon()) + " | "; | |
s += "ARM_FMA = " + std::to_string(ggml_v2_cpu_has_arm_fma()) + " | "; | |
s += "F16C = " + std::to_string(ggml_v2_cpu_has_f16c()) + " | "; | |
s += "FP16_VA = " + std::to_string(ggml_v2_cpu_has_fp16_va()) + " | "; | |
s += "WASM_SIMD = " + std::to_string(ggml_v2_cpu_has_wasm_simd()) + " | "; | |
s += "BLAS = " + std::to_string(ggml_v2_cpu_has_blas()) + " | "; | |
s += "SSE3 = " + std::to_string(ggml_v2_cpu_has_sse3()) + " | "; | |
s += "VSX = " + std::to_string(ggml_v2_cpu_has_vsx()) + " | "; | |
return s.c_str(); | |
} |