File size: 1,976 Bytes
01dcec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
import torch.nn as nn
import torch.nn.functional as F
from kornia.geometry.transform import rotate


class LearnableSpatialTransformWrapper(nn.Module):
    def __init__(self, impl, pad_coef=0.5, angle_init_range=80, train_angle=True):
        super().__init__()
        self.impl = impl
        self.angle = torch.rand(1) * angle_init_range
        if train_angle:
            self.angle = nn.Parameter(self.angle, requires_grad=True)
        self.pad_coef = pad_coef

    def forward(self, x):
        if torch.is_tensor(x):
            return self.inverse_transform(self.impl(self.transform(x)), x)
        elif isinstance(x, tuple):
            x_trans = tuple(self.transform(elem) for elem in x)
            y_trans = self.impl(x_trans)
            return tuple(self.inverse_transform(elem, orig_x) for elem, orig_x in zip(y_trans, x))
        else:
            raise ValueError(f'Unexpected input type {type(x)}')

    def transform(self, x):
        height, width = x.shape[2:]
        pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef)
        x_padded = F.pad(x, [pad_w, pad_w, pad_h, pad_h], mode='reflect')
        x_padded_rotated = rotate(x_padded, angle=self.angle.to(x_padded))
        return x_padded_rotated

    def inverse_transform(self, y_padded_rotated, orig_x):
        height, width = orig_x.shape[2:]
        pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef)

        y_padded = rotate(y_padded_rotated, angle=-self.angle.to(y_padded_rotated))
        y_height, y_width = y_padded.shape[2:]
        y = y_padded[:, :, pad_h : y_height - pad_h, pad_w : y_width - pad_w]
        return y


if __name__ == '__main__':
    layer = LearnableSpatialTransformWrapper(nn.Identity())
    x = torch.arange(2* 3 * 15 * 15).view(2, 3, 15, 15).float()
    y = layer(x)
    assert x.shape == y.shape
    assert torch.allclose(x[:, :, 1:, 1:][:, :, :-1, :-1], y[:, :, 1:, 1:][:, :, :-1, :-1])
    print('all ok')