File size: 4,638 Bytes
b1aad3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
import json
import numpy as np
import torch
import transformers
import tokenizers


from model import BertAD

DICTIONARY = json.load(open('model/dict.json'))
TOKENIZER = tokenizers.BertWordPieceTokenizer(f"model/vocab.txt", lowercase=True)
MAX_LEN = 256

MODEL = BertAD()
vec = MODEL.state_dict()['bert.embeddings.position_ids']
chkp = torch.load(os.path.join('model', 'model_0.bin'), map_location='cpu')
chkp['bert.embeddings.position_ids'] =vec
MODEL.load_state_dict(chkp)


def sample_text(text, acronym, max_len):
    text = text.split()
    idx = text.index(acronym)
    left_idx = max(0, idx - max_len//2)
    right_idx = min(len(text), idx + max_len//2)
    sampled_text = text[left_idx:right_idx]
    return ' '.join(sampled_text)

def process_data(text, acronym, expansion, tokenizer, max_len):

    text = str(text)
    expansion = str(expansion)
    acronym = str(acronym)

    n_tokens = len(text.split())
    if n_tokens>120:
        text = sample_text(text, acronym, 120)

    answers = acronym + ' ' + ' '.join(DICTIONARY[acronym])
    start = answers.find(expansion)
    end = start + len(expansion)

    char_mask = [0]*len(answers)
    for i in range(start, end):
        char_mask[i] = 1

    tok_answer = tokenizer.encode(answers)
    answer_ids = tok_answer.ids
    answer_offsets = tok_answer.offsets

    answer_ids = answer_ids[1:-1]
    answer_offsets = answer_offsets[1:-1]

    target_idx = []
    for i, (off1, off2) in enumerate(answer_offsets):
        if sum(char_mask[off1:off2])>0:
            target_idx.append(i)

    start = target_idx[0]
    end = target_idx[-1]


    text_ids = tokenizer.encode(text).ids[1:-1]

    token_ids = [101] + answer_ids + [102] + text_ids + [102]
    offsets =   [(0,0)] + answer_offsets + [(0,0)]*(len(text_ids) + 2)
    mask = [1] * len(token_ids)
    token_type = [0]*(len(answer_ids) + 1) + [1]*(2+len(text_ids))

    text = answers + text
    start = start + 1
    end = end + 1

    padding = max_len - len(token_ids)


    if padding>=0:
        token_ids = token_ids + ([0] * padding)
        token_type = token_type + [1] * padding
        mask = mask + ([0] * padding)
        offsets = offsets + ([(0, 0)] * padding)
    else:
        token_ids = token_ids[0:max_len]
        token_type = token_type[0:max_len]
        mask = mask[0:max_len]
        offsets = offsets[0:max_len]


    assert len(token_ids)==max_len
    assert len(mask)==max_len
    assert len(offsets)==max_len
    assert len(token_type)==max_len

    return {
            'ids': token_ids,
            'mask': mask,
            'token_type': token_type,
            'offset': offsets,
            'start': start,
            'end': end,  
            'text': text,
            'expansion': expansion,
            'acronym': acronym,
        }


def jaccard(str1, str2): 
    a = set(str1.lower().split()) 
    b = set(str2.lower().split())
    c = a.intersection(b)
    return float(len(c)) / (len(a) + len(b) - len(c))

def evaluate_jaccard(text, selected_text, acronym, offsets, idx_start, idx_end):
    filtered_output = ""
    for ix in range(idx_start, idx_end + 1):
        filtered_output += text[offsets[ix][0]: offsets[ix][1]]
        if (ix+1) < len(offsets) and offsets[ix][1] < offsets[ix+1][0]:
            filtered_output += " "

    candidates = DICTIONARY[acronym]
    candidate_jaccards = [jaccard(w.strip(), filtered_output.strip()) for w in candidates]
    idx = np.argmax(candidate_jaccards)

    return candidate_jaccards[idx], candidates[idx]



def disambiguate(text, acronym):
    
    inputs = process_data(text, acronym, acronym, TOKENIZER, MAX_LEN)
    ids = torch.tensor(input['ids']).view(1, -1)
    mask = torch.tensor(inputs['mask']).view(1, -1)
    token_type = torch.tensor(inputs['token_type']).view(1, -1)
    offsets = inputs['offset']
    expansion = inputs['expnsion']
    acronym = inputs['acronym']

    start_logits, end_logits = MODEL(ids, mask, token_type)

    start_prob = torch.softmax(start_logits, axis=-1).detach().numpy()
    end_prob = torch.softmax(end_logits, axis=-1).detach().numpy()
    
    
    start_idx = np.argmax(start_prob[0,:])
    end_idx = np.argmax(end_prob[0,:])

    js, exp = evaluate_jaccard(text, expansion[0], acronym[0], offsets[0], start_idx, end_idx)
    return exp

text = gr.inputs.Textbox(lines=5, label="Context", placeholder="Type a sentence or paragraph here."), 
acronym = gr.inputs.Textbox(lines=2, label="Question", placeholder="Type acronym")
expansion = gr.outputs.Textbox(label="Answer")

iface = gr.Interface(fn=disambiguate, inputs=[text, acronym], outputs=expansion)
iface.launch()