Spaces:
Runtime error
Runtime error
File size: 17,350 Bytes
b98ea00 61c1d3f b98ea00 410a087 61c1d3f 6ba811c 24584f6 6ba811c 61c1d3f 24584f6 61c1d3f 24584f6 61c1d3f 4ef34bc 61c1d3f 2eafe83 038f9aa f9585ec 4ef34bc 038f9aa 4ef34bc 038f9aa f9585ec 4ef34bc 038f9aa 4ef34bc 038f9aa f9585ec 4ef34bc 038f9aa 4ef34bc 038f9aa f9585ec 4ef34bc 61c1d3f 2eafe83 f9585ec 4ef34bc b98ea00 410a087 8933811 61c1d3f 410a087 ca30b63 410a087 b98ea00 410a087 b98ea00 410a087 b98ea00 410a087 b98ea00 410a087 b98ea00 410a087 b98ea00 410a087 b98ea00 410a087 b98ea00 410a087 b98ea00 410a087 b98ea00 410a087 b98ea00 410a087 b98ea00 410a087 b98ea00 410a087 b98ea00 410a087 b98ea00 410a087 b98ea00 3bf3e60 b98ea00 410a087 2eafe83 ca30b63 61c1d3f 8933811 61c1d3f 8933811 410a087 61c1d3f b98ea00 2d5a4d0 b98ea00 61c1d3f 2d5a4d0 61c1d3f b98ea00 9307f56 61c1d3f 0ad311a 61c1d3f b98ea00 e8baa3f b98ea00 61c1d3f b98ea00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
import os
import re
import json
import getpass
import logging
import openai
import asyncio
from typing import Any, List, Tuple, Dict
import gradio as gr
import llama_index
from fpdf import FPDF
from llama_index import Document
from llama_index.llms import OpenAI
from llama_index.embeddings import OpenAIEmbedding, HuggingFaceEmbedding
from llama_index.llms import HuggingFaceLLM
import requests
from RAG_utils import PDFProcessor_Unstructured, PDFQueryEngine, HybridRetriever, MixtralLLM, KeywordSearch, base_utils, ConfigManager
# Configure basic logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
# Create a logger object
logger = logging.getLogger(__name__)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
config_manager = ConfigManager()
#config_manager.load_config("api", "Config/api_config.json")
config_manager.load_config("model", "model_config.json")
openai.api_key = os.environ['OPENAI_API_KEY'] #config_manager.get_config_value("api", "OPENAI_API_KEY")
hf_token = os.environ['HF_TOKEN']#config_manager.get_config_value("api", "HF_TOKEN")
# PDF rendering and chunking parameters
pdf_processing_config = config_manager.get_config_value("model", "pdf_processing")
ALLOWED_EXTENSIONS = config_manager.get_config_value("model", "allowed_extensions")
embed = config_manager.get_config_value("model", "embeddings")
embed_model_name = config_manager.get_config_value("model", "embeddings_model")
#llm_model = config_manager.get_config_value("model", "llm_model")
model_temperature = config_manager.get_config_value("model", "model_temp")
output_token_size = config_manager.get_config_value("model", "max_tokens")
model_context_window = config_manager.get_config_value("model", "context_window")
gpt_prompt_path = config_manager.get_config_value("model","GPT_PROMPT_PATH")
mistral_prompt_path = config_manager.get_config_value("model","MISTRAL_PROMPT_PATH")
info_prompt_path = config_manager.get_config_value("model", "INFO_PROMPT_PATH")
peer_review_journals_path = config_manager.get_config_value("model", "peer_review_journals_path")
eq_network_journals_path = config_manager.get_config_value("model", "eq_network_journals_path")
queries = config_manager.get_config_value("model", "queries")
criteria = config_manager.get_config_value("model", "criteria")
num_criteria = len(queries)
author_query = config_manager.get_config_value("model", "author_query")
journal_query = config_manager.get_config_value("model", "journal_query")
# Helper function to check if the file extension is allowed
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def generate_score_bar(score, num_criteria):
# Convert and round the score from a 9-point scale to a 100-point scale
score_out_of_100 = round((score / num_criteria) * 100)
# Determine the color and text based on the original score
if score == 9:
color = "#4CAF50" # green
text = "Very good"
elif score in [7, 8]:
color = "#FFEB3B" # yellow
text = "Good"
elif score in [5, 6]:
color = "#FF9800" # orange
text = "Ok"
elif score in [3, 4]:
color = "#F44336" # red
text = "Bad"
else: # score < 3
color = "#800000" # maroon
text = "Very bad"
# Create the HTML for the score bar
score_bar_html = f"""
<div style="background-color: #ddd; border-radius: 10px; position: relative; height: 20px; width: 100%;">
<div style="background-color: {color}; height: 100%; border-radius: 10px; width: {score_out_of_100}%;"></div>
</div>
<p style="color: {color};">{text}</p> <!-- Display the text -->
"""
return score_bar_html
class PDF(FPDF):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Load the DejaVu font files
self.add_font('DejaVu', '', 'DejaVu_Sans/DejaVuSansCondensed.ttf', uni=True)
self.add_font('DejaVu', 'B', 'DejaVu_Sans/DejaVuSansCondensed-Bold.ttf', uni=True)
self.add_font('DejaVu', 'I', 'DejaVu_Sans/DejaVuSansCondensed-Oblique.ttf', uni=True)
def header(self):
self.set_font('DejaVu', 'B', 12)
self.cell(0, 10, 'Paper Analysis Report', 0, 1, 'C')
def footer(self):
self.set_y(-15)
self.set_font('DejaVu', 'I', 8)
self.cell(0, 10, f'Page {self.page_no()}', 0, 0, 'C')
import os
def create_pdf_report(title, author_info, score, criteria, reasoning_list, input_filename, output_dir="/tmp"):
# Extract the base name without extension
base_name = os.path.splitext(input_filename)[0]
output_path = os.path.join(output_dir, f"{base_name}_report.pdf")
pdf = PDF()
pdf.add_page()
# Set margins
pdf.set_left_margin(10)
pdf.set_right_margin(10)
# Title
pdf.set_font("DejaVu", 'B', 14)
pdf.cell(0, 10, "Title:", 0, 1)
pdf.set_font("DejaVu", '', 12)
pdf.multi_cell(0, 10, title, 0, 1)
# Author Information
pdf.set_font("DejaVu", 'B', 14)
pdf.cell(0, 10, "Author Information:", 0, 1)
pdf.set_font("DejaVu", '', 12)
pdf.multi_cell(0, 10, author_info, 0, 1)
# Score
pdf.set_font("DejaVu", 'B', 14)
pdf.cell(0, 10, "Score:", 0, 1)
pdf.set_font("DejaVu", '', 12)
pdf.multi_cell(0, 10, score, 0, 1)
# Reasoning - each reasoning with a green heading in bold
for heading, reasoning in zip(criteria, reasoning_list):
pdf.set_font("DejaVu", 'B', 14)
pdf.set_text_color(0, 128, 0) # Green color
pdf.multi_cell(0, 10, heading, 0, 1)
pdf.set_text_color(0, 0, 0) # Reset to black color
pdf.set_font("DejaVu", '', 12)
pdf.multi_cell(0, 10, reasoning, 0, 1)
# Save the PDF to the specified output path
pdf.output(output_path)
return output_path # Return the path to the generated report
def process_pdf(uploaded_files, llm_model, n_criteria = num_criteria):
# Initialize aggregation variables
final_score = 0
final_reasoning = []
final_score_bar_html = ""
final_author_info_html = ""
final_title_info_html = ""
output_files = []
for i, uploaded_file in enumerate(uploaded_files):
# Process the PDF file
file_name_without_extension = os.path.splitext(os.path.basename(uploaded_file))[0]
file_name_without_extension
pdf_processor = PDFProcessor_Unstructured(pdf_processing_config)
merged_chunks, tables, title = pdf_processor.process_pdf_file(uploaded_file)
documents = [Document(text=t) for t in merged_chunks]
# Prompts and Queries
utils = base_utils()
info_prompt = utils.read_from_file(info_prompt_path)
# LLM Model choice
try:
if llm_model == "Model 1":
llm = OpenAI(model="gpt-4-1106-preview", temperature=model_temperature, max_tokens=output_token_size)
general_prompt = utils.read_from_file(gpt_prompt_path)
elif llm_model == "Model 2":
if any(param is None for param in [model_context_window, output_token_size, model_temperature, hf_token]):
raise ValueError("All parameters are required for Mistral LLM.")
llm = MixtralLLM(context_window=model_context_window, num_output=output_token_size,
temperature=model_temperature, model_name="mistralai/Mixtral-8x7B-Instruct-v0.1", api_key=hf_token)
general_prompt = utils.read_from_file(mistral_prompt_path)
else:
raise ValueError(f"Unsupported language model: {llm_model}")
except Exception as e:
logger.error(f"Error initializing language model '{llm_model}': {e}", exc_info=True)
raise # Or handle the exception as needed
# Embedding model choice for RAG
try:
if embed == "openai":
embed_model = OpenAIEmbedding(model="text-embedding-3-large")
elif embed == "huggingface":
# Use the specified model name
embed_model = HuggingFaceEmbedding(embed_model_name)
else:
raise ValueError(f"Unsupported embedding model: {embed_model}")
except Exception as e:
logger.error(f"Error initializing embedding model: {e}", exc_info=True)
raise
peer_review_journals = utils.read_from_file(peer_review_journals_path)
eq_network_journals = utils.read_from_file(eq_network_journals_path)
peer_review_journals_list = peer_review_journals.split('\n')
eq_network_journals_list = eq_network_journals.split('\n')
modified_journal_query = "Is the given research paper published in any of the following journals: " + ", ".join(peer_review_journals_list) + "?"
info_llm = OpenAI(model="gpt-4-1106-preview", temperature=model_temperature, max_tokens=100)
pdf_info_query = PDFQueryEngine(documents, info_llm, embed_model, (info_prompt))
info_query_engine = pdf_info_query.setup_query_engine()
journal_result = info_query_engine.query(modified_journal_query).response
author_result = info_query_engine.query(author_query).response
pdf_criteria_query = PDFQueryEngine(documents, llm, embed_model, (general_prompt))
# Check for prior registration
nlp_methods = KeywordSearch(merged_chunks)
eq_journal_result = nlp_methods.find_journal_name(journal_result, eq_network_journals_list)
peer_journal_result = nlp_methods.find_journal_name(journal_result, peer_review_journals_list)
registration_result = nlp_methods.check_registration()
# Evaluate with OpenAI model
total_score, criteria_met, score_percentage, reasoning = pdf_criteria_query.evaluate_with_llm(registration_result, peer_journal_result, eq_journal_result, queries)
# Convert reasoning list to plain text
reasoning_text = "\n".join([f"{idx + 1}. {reason}" for idx, reason in enumerate(reasoning)])
# Generate the score bar HTML
score_bar_html = generate_score_bar(total_score, n_criteria)
scaled_total_score = str(round((total_score / n_criteria) * 100)) + "/100"
create_pdf_report(title, author_result, scaled_total_score, reasoning_text, file_name_without_extension)
output_files.append(output_path)
# Construct the processing message
processing_message = f"Processing complete. {len(uploaded_files)} reports generated. Please download your reports below."
return processing_message, output_files
# Return the score as a string and the reasoning as HTML
#return str(round((total_score / n_criteria) * 100)) + "/100", score_bar_html, reasoning_html, author_info_html, title_info_html
with gr.Blocks(theme=gr.themes.Glass(
text_size="sm",
font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"],
primary_hue="neutral",
secondary_hue="gray")) as demo:
gr.Markdown("## Med Library")
with gr.Row():
file_upload = gr.File(label="Choose papers", file_types=['.pdf'], file_count="multiple")
with gr.Row():
model_choice = gr.Dropdown(["Model 1", "Model 2"], label="Choose a model", value="Model 1")
submit_button = gr.Button("Evaluate")
processing_message_output = gr.Textbox(label="Processing Status", interactive=False)
report_download_links = gr.File(label="Download Reports", type="filepath", file_count="multiple")
submit_button.click(
fn=process_pdf,
inputs=[file_upload, model_choice],
outputs=[processing_message_output, report_download_links]
)
#Launch the app
demo.launch(share=True, server_name="0.0.0.0", server_port=7860)
# Main route for file upload and display results
# @app.route('/', methods=['GET', 'POST'])
# def upload_and_display_results():
# total_score = 0
# score_percentage = 0
# reasoning = []
# criteria_met = 0
# if request.method == 'POST':
# # Check if the post request has the file part
# if 'file' not in request.files:
# flash('No file part')
# return redirect(request.url)
# file = request.files['file']
# # If user does not select file, browser also submits an empty part without filename
# if file.filename == '':
# flash('No selected file')
# return redirect(request.url)
# if file and allowed_file(file.filename):
# try:
# # Process the PDF file
# pdf_processor = PDFProcessor_Unstructured(pdf_processing_config)
# merged_chunks, tables = pdf_processor.process_pdf_file(file)
# documents = [Document(text=t) for t in merged_chunks]
# # LLM Model choice
# try:
# if llm_model == "gpt-4" or llm_model == "gpt-3.5-turbo":
# llm = OpenAI(model=llm_model, temperature=model_temperature, max_tokens=output_token_size)
# elif llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
# if any(param is None for param in [model_context_window, output_token_size, model_temperature, hf_token]):
# raise ValueError("All parameters are required for Mistral LLM.")
# llm = MixtralLLM(context_window=model_context_window, num_output=output_token_size,
# temperature=model_temperature, model_name=llm_model, api_key=hf_token)
# else:
# raise ValueError(f"Unsupported language model: {llm_model}")
# except Exception as e:
# logger.error(f"Error initializing language model '{llm_model}': {e}", exc_info=True)
# raise # Or handle the exception as needed
# # Embedding model choice for RAG
# try:
# if embed == "openai":
# embed_model = OpenAIEmbedding()
# elif embed == "huggingface":
# if embed_model_name is None:
# # Set to default model if name not provided
# embed_model_name = "BAAI/bge-small-en-v1.5"
# embed_model = HuggingFaceEmbedding(embed_model_name)
# else:
# # Use the specified model name
# embed_model = HuggingFaceEmbedding(embed_model_name)
# else:
# raise ValueError(f"Unsupported embedding model: {embed_model}")
# except Exception as e:
# logger.error(f"Error initializing embedding model: {e}", exc_info=True)
# raise
# # Prompts and Queries
# utils = base_utils()
# general_prompt = utils.read_from_file(general_prompt_path)
# info_prompt = utils.read_from_file(info_prompt_path)
# peer_review_journals = utils.read_from_file(peer_review_journals_path)
# eq_network_journals = utils.read_from_file(eq_network_journals_path)
# peer_review_journals_list = peer_review_journals.split('\n')
# eq_network_journals_list = eq_network_journals.split('\n')
# modified_journal_query = "Is the given research paper published in any of the following journals: " + ", ".join(peer_review_journals_list) + "?"
# pdf_info_query = PDFQueryEngine(documents, llm, embed_model, (info_prompt))
# info_query_engine = pdf_info_query.setup_query_engine()
# journal_result = info_query_engine.query(modified_journal_query).response
# pdf_criteria_query = PDFQueryEngine(documents, llm, embed_model, (general_prompt))
# # Check for prior registration
# nlp_methods = KeywordSearch(merged_chunks)
# eq_journal_result = nlp_methods.find_journal_name(journal_result, eq_network_journals_list)
# peer_journal_result = nlp_methods.find_journal_name(journal_result, peer_review_journals_list)
# registration_result = nlp_methods.check_registration()
# # Evaluate with OpenAI model
# total_score, criteria_met, score_percentage, reasoning = pdf_criteria_query.evaluate_with_llm(registration_result, peer_journal_result, eq_journal_result, queries)
# except Exception as e:
# logging.exception("An error occurred while processing the file.")
# # Consider adding a user-friendly message or redirect
# flash('An error occurred while processing the file.')
# return redirect(request.url)
# return render_template('index.html',
# total_score = total_score,
# score_percentage = score_percentage,
# criteria_met = criteria_met,
# reasoning = reasoning)
# if __name__ == '__main__':
# app.run(debug=True)
|