File size: 15,347 Bytes
b98ea00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ae147a
b98ea00
 
 
 
 
 
 
 
 
 
612bb66
b98ea00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a66661
b98ea00
 
 
 
 
 
9a241a1
b98ea00
 
 
 
 
 
 
 
 
dfc039f
b98ea00
 
 
 
 
 
 
 
 
 
8ae147a
b98ea00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a66661
 
 
 
 
 
 
b98ea00
 
 
 
 
 
 
 
 
 
7a66661
b98ea00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import os
import re
import json
import getpass
import logging
import openai
import asyncio
from typing import Any, List, Tuple, Dict
import gradio as gr
import llama_index
from llama_index import Document
from llama_index.llms import OpenAI
from llama_index.embeddings import OpenAIEmbedding, HuggingFaceEmbedding
from llama_index.llms import HuggingFaceLLM
import requests

from RAG_utils import PDFProcessor_Unstructured, PDFQueryEngine, HybridRetriever, MixtralLLM, KeywordSearch, base_utils, ConfigManager


# Configure basic logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')

# Create a logger object
logger = logging.getLogger(__name__)

os.environ["TOKENIZERS_PARALLELISM"] = "false"

config_manager = ConfigManager()
#config_manager.load_config("api", "Config/api_config.json")
config_manager.load_config("model", "model_config.json")

openai.api_key = os.environ['OPENAI_API_KEY'] #config_manager.get_config_value("api", "OPENAI_API_KEY")
hf_token = os.environ['HF_TOKEN']#config_manager.get_config_value("api", "HF_TOKEN")

# PDF rendering and chunking parameters
pdf_processing_config = config_manager.get_config_value("model", "pdf_processing")


ALLOWED_EXTENSIONS = config_manager.get_config_value("model", "allowed_extensions")
embed = config_manager.get_config_value("model", "embeddings")
embed_model_name = config_manager.get_config_value("model", "embeddings_model")


#llm_model = config_manager.get_config_value("model", "llm_model")
model_temperature = config_manager.get_config_value("model", "model_temp")
output_token_size = config_manager.get_config_value("model", "max_tokens")
model_context_window = config_manager.get_config_value("model", "context_window")

gpt_prompt_path = config_manager.get_config_value("model","GPT_PROMPT_PATH")
mistral_prompt_path = config_manager.get_config_value("model","MISTRAL_PROMPT_PATH")
info_prompt_path = config_manager.get_config_value("model", "INFO_PROMPT_PATH")

peer_review_journals_path = config_manager.get_config_value("model", "peer_review_journals_path")
eq_network_journals_path = config_manager.get_config_value("model", "eq_network_journals_path")

queries = config_manager.get_config_value("model", "queries")
criteria = config_manager.get_config_value("model", "criteria")
num_criteria = len(queries)

author_query = config_manager.get_config_value("model", "author_query")
journal_query = config_manager.get_config_value("model", "journal_query")


# Helper function to check if the file extension is allowed
def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

def generate_score_bar(score, num_criteria):
    # Convert and round the score from a 9-point scale to a 100-point scale
    score_out_of_100 = round((score / num_criteria) * 100)

    # Determine the color and text based on the original score
    if score == 9:
        color = "#4CAF50"  # green
        text = "Very good"
    elif score in [7, 8]:
        color = "#FFEB3B"  # yellow
        text = "Good"
    elif score in [5, 6]:
        color = "#FF9800"  # orange
        text = "Ok"
    elif score in [3, 4]:
        color = "#F44336"  # red
        text = "Bad"
    else:  # score < 3
        color = "#800000"  # maroon
        text = "Very bad"

    # Create the HTML for the score bar
    score_bar_html = f"""
        <div style="background-color: #ddd; border-radius: 10px; position: relative; height: 20px; width: 100%;">
            <div style="background-color: {color}; height: 100%; border-radius: 10px; width: {score_out_of_100}%;"></div>
        </div>
        <p style="color: {color};">{text}</p>  <!-- Display the text -->
    """
    return score_bar_html
def format_example(example):
        """
        Formats a few-shot example into a string.
        Args:
            example (dict): A dictionary containing 'query', 'score', and 'reasoning' for the few-shot example.
        Returns:
            str: Formatted few-shot example text.
        """
        return "Example:\nQuery: {}\n Direct Answer: {}\n".format(
            example['query'], example['Answer'])
    
def process_pdf(uploaded_file, llm_model, n_criteria = num_criteria):
    # Process the PDF file
    pdf_processor = PDFProcessor_Unstructured(pdf_processing_config)
    merged_chunks, tables, title = pdf_processor.process_pdf_file(uploaded_file)
    documents = [Document(text=t) for t in merged_chunks]

    # Prompts and Queries
    utils = base_utils()
    
    info_prompt = utils.read_from_file(info_prompt_path)

    # LLM Model choice
    try:
        if llm_model == "Model 1":
            llm = OpenAI(model="gpt-4-1106-preview", temperature=model_temperature, max_tokens=output_token_size)
            general_prompt = utils.read_from_file(gpt_prompt_path)

        elif llm_model == "Model 2":
            if any(param is None for param in [model_context_window, output_token_size, model_temperature, hf_token]):
                raise ValueError("All parameters are required for Mistral LLM.")

               
            llm = MixtralLLM(context_window=model_context_window, num_output=output_token_size,
                           temperature=model_temperature, model_name="mistralai/Mixtral-8x7B-Instruct-v0.1", api_key=hf_token)
            general_prompt = utils.read_from_file(mistral_prompt_path)
        else:
            raise ValueError(f"Unsupported language model: {llm_model}")

    except Exception as e:
        logger.error(f"Error initializing language model '{llm_model}': {e}", exc_info=True)
        raise  # Or handle the exception as needed

    # Embedding model choice for RAG
    try:
        if embed == "openai":
            embed_model = OpenAIEmbedding(model="text-embedding-3-large")

        elif embed == "huggingface":
            # Use the specified model name
            embed_model = HuggingFaceEmbedding(embed_model_name)
        
        else:
            raise ValueError(f"Unsupported embedding model: {embed_model}")


    except Exception as e:
        logger.error(f"Error initializing embedding model: {e}", exc_info=True)
        raise

    
    peer_review_journals = utils.read_from_file(peer_review_journals_path)
    eq_network_journals = utils.read_from_file(eq_network_journals_path)

    peer_review_journals_list = peer_review_journals.split('\n')
    eq_network_journals_list = eq_network_journals.split('\n')

    
    modified_journal_query = "Is the given research paper published in any of the following journals: " + ", ".join(peer_review_journals_list) + "?"

    formatted_journal_example = format_example(example_journal)
    formatted_author_example = format_example(example_author)
    
    qa_author_prompt_with_example = info_prompt.replace("{few_shot_examples}", formatted_author_example)
    qa_journal_prompt_with_example = info_prompt.replace("{few_shot_examples}", formatted_journal_example)

    info_llm = OpenAI(model="gpt-4-1106-preview", temperature=model_temperature, max_tokens=100)
    pdf_info_query = PDFQueryEngine(documents, info_llm, embed_model, (info_prompt))
    info_query_engine = pdf_info_query.setup_query_engine()
    journal_result = info_query_engine.query(modified_journal_query).response
    author_result = info_query_engine.query(author_query).response
    
    
    pdf_criteria_query = PDFQueryEngine(documents, llm, embed_model, (general_prompt))

    # Check for prior registration
    nlp_methods = KeywordSearch(merged_chunks)
    eq_journal_result = nlp_methods.find_journal_name(journal_result, eq_network_journals_list)
    peer_journal_result = nlp_methods.find_journal_name(journal_result, peer_review_journals_list)

    registration_result = nlp_methods.check_registration()
        
    # Evaluate with OpenAI model
    total_score, criteria_met, score_percentage, reasoning = pdf_criteria_query.evaluate_with_llm(registration_result, peer_journal_result, eq_journal_result, queries)

    reasoning_html = "<ul>"
    for query, reason in zip(criteria, reasoning):
        reasoning_html += f"<li style='font-size: 18px;'><strong style='color: forestgreen;'>{query}</strong> <br> Reasoning: {reason}</li>"
    reasoning_html += "</ul>"

    # Generate the score bar HTML
    score_bar_html = generate_score_bar(total_score, n_criteria)

    # Return the score as a string and the reasoning as HTML
    return str(round((total_score / n_criteria) * 100)) + "/100", score_bar_html, reasoning_html, author_result, title


with gr.Blocks(theme=gr.themes.Glass(
    text_size="sm", 
    font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"], 
    primary_hue="neutral", 
    secondary_hue="gray")) as demo:
    
    gr.Markdown("## Med Library")
    
    with gr.Row():
        file_upload = gr.File(label="Choose a paper", file_types=['.pdf'])
    
    with gr.Row():
        models = ["Model 1", "Model 2"]
        model_choice = gr.Dropdown(models, label="Choose a model", value="Model 1")
        submit_button = gr.Button("Evaluate")

    score_output = gr.Textbox(label="Final Score:", interactive=False)
    score_bar_output = gr.HTML()
    reasoning_output = gr.HTML()

    # Heading for Author Information
    gr.Markdown("## Title of the paper")

    # Output for dynamically generated author information
    title_info_output = gr.Markdown()

        
    # Heading for Author Information
    gr.Markdown("## Author Information")

    # Output for dynamically generated author information
    author_info_output = gr.Markdown()
        
    # Set the click event for the button
    submit_button.click(
        fn=process_pdf,
        inputs=[file_upload, model_choice],
        outputs=[score_output, score_bar_output, reasoning_output, author_info_output, title_info_output]
    )


#Launch the app
demo.launch(share=True, server_name="0.0.0.0", server_port=7860)

# Main route for file upload and display results
# @app.route('/', methods=['GET', 'POST'])
# def upload_and_display_results():
#     total_score = 0
#     score_percentage = 0
#     reasoning = []
#     criteria_met = 0

#     if request.method == 'POST':
#         # Check if the post request has the file part
#         if 'file' not in request.files:
#             flash('No file part')
#             return redirect(request.url)
#         file = request.files['file']
#         # If user does not select file, browser also submits an empty part without filename
#         if file.filename == '':
#             flash('No selected file')
#             return redirect(request.url)
#         if file and allowed_file(file.filename):
#             try:
#                 # Process the PDF file
#                 pdf_processor = PDFProcessor_Unstructured(pdf_processing_config)
#                 merged_chunks, tables = pdf_processor.process_pdf_file(file)
#                 documents = [Document(text=t) for t in merged_chunks]

#                 # LLM Model choice
#                 try:
#                     if llm_model == "gpt-4" or llm_model == "gpt-3.5-turbo":
#                         llm = OpenAI(model=llm_model, temperature=model_temperature, max_tokens=output_token_size)

#                     elif llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
#                         if any(param is None for param in [model_context_window, output_token_size, model_temperature, hf_token]):
#                             raise ValueError("All parameters are required for Mistral LLM.")

#                         llm = MixtralLLM(context_window=model_context_window, num_output=output_token_size,
#                             temperature=model_temperature, model_name=llm_model, api_key=hf_token)
#                     else:
#                         raise ValueError(f"Unsupported language model: {llm_model}")

#                 except Exception as e:
#                     logger.error(f"Error initializing language model '{llm_model}': {e}", exc_info=True)
#                     raise  # Or handle the exception as needed

#                 # Embedding model choice for RAG
#                 try:
#                     if embed == "openai":
#                         embed_model = OpenAIEmbedding()

#                     elif embed == "huggingface":
#                         if embed_model_name is None:
#                             # Set to default model if name not provided
#                             embed_model_name = "BAAI/bge-small-en-v1.5"
#                             embed_model = HuggingFaceEmbedding(embed_model_name)
#                         else:
#                             # Use the specified model name
#                             embed_model = HuggingFaceEmbedding(embed_model_name)
#                     else:
#                         raise ValueError(f"Unsupported embedding model: {embed_model}")


#                 except Exception as e:
#                     logger.error(f"Error initializing embedding model: {e}", exc_info=True)
#                     raise



#                 # Prompts and Queries
#                 utils = base_utils()
#                 general_prompt = utils.read_from_file(general_prompt_path)
#                 info_prompt = utils.read_from_file(info_prompt_path)

#                 peer_review_journals = utils.read_from_file(peer_review_journals_path)
#                 eq_network_journals = utils.read_from_file(eq_network_journals_path)

#                 peer_review_journals_list = peer_review_journals.split('\n')
#                 eq_network_journals_list = eq_network_journals.split('\n')


#                 modified_journal_query = "Is the given research paper published in any of the following journals: " + ", ".join(peer_review_journals_list) + "?"

#                 pdf_info_query = PDFQueryEngine(documents, llm, embed_model, (info_prompt))
#                 info_query_engine = pdf_info_query.setup_query_engine()
#                 journal_result = info_query_engine.query(modified_journal_query).response


#                 pdf_criteria_query = PDFQueryEngine(documents, llm, embed_model, (general_prompt))

#                 # Check for prior registration
#                 nlp_methods = KeywordSearch(merged_chunks)
#                 eq_journal_result = nlp_methods.find_journal_name(journal_result, eq_network_journals_list)
#                 peer_journal_result = nlp_methods.find_journal_name(journal_result, peer_review_journals_list)
#                 registration_result = nlp_methods.check_registration()


#                 # Evaluate with OpenAI model
#                 total_score, criteria_met, score_percentage, reasoning = pdf_criteria_query.evaluate_with_llm(registration_result, peer_journal_result, eq_journal_result, queries)


#             except Exception as e:
#                 logging.exception("An error occurred while processing the file.")
#                 # Consider adding a user-friendly message or redirect
#                 flash('An error occurred while processing the file.')
#                 return redirect(request.url)

#     return render_template('index.html',
#                        total_score = total_score,
#                        score_percentage = score_percentage,
#                        criteria_met = criteria_met,
#                        reasoning = reasoning)


# if __name__ == '__main__':
#     app.run(debug=True)