File size: 3,985 Bytes
efebc5f
4814c74
efebc5f
4bde5af
 
 
 
 
9b10cb5
4bde5af
 
 
7ac2a83
9b10cb5
4bde5af
 
 
 
 
 
 
55f6480
 
4bde5af
 
4814c74
4bde5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4814c74
4bde5af
 
 
 
 
 
 
 
 
 
 
74a687d
 
 
4bde5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4814c74
7ac2a83
4814c74
 
 
 
 
 
 
 
9b10cb5
 
 
 
 
7ac2a83
 
 
 
 
cfb7438
7ac2a83
4bde5af
74a687d
 
 
 
4814c74
4bde5af
 
 
041e763
4bde5af
 
 
 
 
 
 
041e763
4bde5af
 
 
 
 
 
 
 
041e763
4814c74
 
 
4bde5af
 
 
 
041e763
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
os.environ['NUMBA_CACHE_DIR'] = '/tmp/'

from fastapi import FastAPI, WebSocket, WebSocketDisconnect, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, HTMLResponse
import numpy as np
import librosa
import soundfile as sf
import joblib
import uvicorn
import logging
import io
from pydub import AudioSegment
from typing import List

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI()

app.mount("/static", StaticFiles(directory="static"), name="static")

@app.get("/", response_class=HTMLResponse)
async def get(request: Request):
    logger.info("Serving the index page")
    with open("templates/index.html") as f:
        html_content = f.read()
    return HTMLResponse(content=html_content, status_code=200)

@app.get("/health")
def health_check():
    return {"status": "ok"}

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

is_detecting = False

model = joblib.load('models/xgb_test.pkl')

class ConnectionManager:
    def __init__(self):
        self.active_connections: List[WebSocket] = []

    async def connect(self, websocket: WebSocket):
        await websocket.accept()
        self.active_connections.append(websocket)

    def disconnect(self, websocket: WebSocket):
        self.active_connections.remove(websocket)

    async def send_message(self, websocket: WebSocket, message: str):
        await websocket.send_text(message)

manager = ConnectionManager()

def extract_features(audio):
    sr = 16000
    mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=13)
    mfccs = np.mean(mfccs, axis=1)

    chroma = librosa.feature.chroma_stft(y=audio, sr=sr)
    chroma = np.mean(chroma, axis=1)

    contrast = librosa.feature.spectral_contrast(y=audio, sr=sr)
    contrast = np.mean(contrast, axis=1)

    centroid = librosa.feature.spectral_centroid(y=audio, sr=sr)
    centroid = np.mean(centroid, axis=1)

    combined_features = np.hstack([mfccs, chroma, contrast, centroid])
    return combined_features

async def process_audio_data(audio_data):
    try:
        # Prepend header to the audio data
        with open("header.webm", 'rb') as source_file:
            header_data = source_file.read(1024)
        
        full_audio_data = header_data + audio_data

        # Convert audio data from webm to wav format using pydub
        audio_segment = AudioSegment.from_file(io.BytesIO(full_audio_data), format="webm")
        wav_io = io.BytesIO()
        audio_segment.export(wav_io, format="wav")
        wav_io.seek(0)
        audio, sr = sf.read(wav_io, dtype='float32')
    except Exception as e:
        logger.error(f"Failed to read audio data: {e}")
        return

    if audio.ndim > 1:  # If audio has more than one channel, average them
        audio = np.mean(audio, axis=1)
    
    features = extract_features(audio)
    features = features.reshape(1, -1)
    prediction = model.predict(features)
    is_fake = prediction[0]
    result = 'fake' if is_fake else 'real'
    
    return result

@app.post("/start_detection")
async def start_detection():
    global is_detecting

    if not is_detecting:
        is_detecting = True
    return JSONResponse(content={'status': 'detection_started'})

@app.post("/stop_detection")
async def stop_detection():
    global is_detecting
    is_detecting = False
    return JSONResponse(content={'status': 'detection_stopped'})

@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    await manager.connect(websocket)
    try:
        while True:
            data = await websocket.receive_bytes()
            result = await process_audio_data(data)
            if result:
                await manager.send_message(websocket, result)
    except WebSocketDisconnect:
        manager.disconnect(websocket)

if __name__ == '__main__':
    uvicorn.run(app, host="0.0.0.0", port=7860)