File size: 4,724 Bytes
391bf1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4b0eea
391bf1a
 
 
 
e4b0eea
d78252d
391bf1a
 
d78252d
391bf1a
 
 
 
d78252d
391bf1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d78252d
391bf1a
 
 
 
 
 
 
 
d78252d
391bf1a
 
 
 
 
 
2159de8
391bf1a
 
 
 
a41d73e
391bf1a
 
 
 
 
2159de8
391bf1a
 
 
 
a41d73e
391bf1a
 
 
 
2159de8
391bf1a
 
 
a41d73e
 
391bf1a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import torch

import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read

import tempfile
import os

MODEL_NAME = "kotoba-tech/kotoba-whisper-v1.0"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files

device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=15,
    device=device,
)



def transcribe(inputs):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
    return pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    return f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe> </center>'

def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))
    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
    ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))


def yt_transcribe(yt_url, max_filesize=75.0):
    html_embed_str = _return_yt_html_embed(yt_url)
    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            inputs = f.read()
    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
    return html_embed_str, text


demo = gr.Blocks()
mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[gr.inputs.Audio(source="microphone", type="filepath", optional=True)],
    outputs="text",
    layout="horizontal",
    theme="huggingface",
    title=f"Transcribe Audio with {os.path.basename(MODEL_NAME)}",
    description=f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of arbitrary length.",
    allow_flagging="never",
)

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file")],
    outputs="text",
    layout="horizontal",
    theme="huggingface",
    title=f"Transcribe Audio with {os.path.basename(MODEL_NAME)}",
    description=f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of arbitrary length.",
    allow_flagging="never",
)
yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
    outputs=["html", "text"],
    layout="horizontal",
    theme="huggingface",
    title=f"Transcribe YouTube with {os.path.basename(MODEL_NAME)}",
    description=f"Transcribe long-form YouTube videos with the click of a button! Demo uses Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of arbitrary length.",
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])

demo.launch(enable_queue=True)