mischeiwiller's picture
Update tutorial link
076a47f verified
import gradio as gr
import kornia as K
from kornia.core import Tensor
from PIL import Image
import numpy as np
def load_img(file):
# load the image using PIL and convert to tensor
img_pil = Image.open(file).convert('RGB')
img_np = np.array(img_pil)
img_rgb: Tensor = K.utils.image_to_tensor(img_np).float() / 255.0
img_rgb = img_rgb.unsqueeze(0) # add batch dimension
img_gray = K.color.rgb_to_grayscale(img_rgb)
return img_gray
def canny_edge_detector(file):
x_gray = load_img(file)
x_canny: Tensor = K.filters.canny(x_gray)[0]
img_out = 1.0 - x_canny.clamp(0.0, 1.0)
return K.utils.tensor_to_image(img_out)
def sobel_edge_detector(file):
x_gray = load_img(file)
x_sobel: Tensor = K.filters.sobel(x_gray)
img_out = 1.0 - x_sobel
return K.utils.tensor_to_image(img_out)
def simple_edge_detector(file, order, direction):
x_gray = load_img(file)
grads: Tensor = K.filters.spatial_gradient(x_gray, order=order) # BxCx2xHxW
grads_x = grads[:, :, 0]
grads_y = grads[:, :, 1]
if direction == "x":
img_out = 1.0 - grads_x.clamp(0.0, 1.0)
else:
img_out = 1.0 - grads_y.clamp(0.0, 1.0)
return K.utils.tensor_to_image(img_out)
def laplacian_edge_detector(file, kernel=9):
x_gray = load_img(file)
x_laplacian: Tensor = K.filters.laplacian(x_gray, kernel_size=kernel)
img_out = 1.0 - x_laplacian.clamp(0.0, 1.0)
return K.utils.tensor_to_image(img_out)
examples = [["examples/doraemon.png"], ["examples/kornia.png"]]
title = "Kornia Edge Detector"
description = "<p style='text-align: center'>This is a Gradio demo for Kornia's Edge Detector.</p><p style='text-align: center'>To use it, simply upload your image, or click one of the examples to load them, and use the sliders to enhance! Read more at the links at the bottom.</p>"
article = "<p style='text-align: center'><a href='https://kornia.readthedocs.io/en/latest/' target='_blank'>Kornia Docs</a> | <a href='https://github.com/kornia/kornia' target='_blank'>Kornia Github Repo</a> | <a https://kornia.github.io/tutorials/#category=Edge%20Detection' target='_blank'>Kornia Enhancements Tutorial</a></p>"
def change_layout(choice):
kernel = gr.update(visible=False)
order = gr.update(visible=False)
direction = gr.update(visible=False)
if choice == "Laplacian":
return [gr.update(value=3, visible=True), order, direction]
elif choice == "Simple":
return [kernel, gr.update(value=2, visible=True), gr.update(value="x", visible=True)]
return [kernel, order, direction]
def Detect(file, choice):
layout = change_layout(choice)
if choice == "Canny":
img = canny_edge_detector(file)
elif choice == "Sobel":
img = sobel_edge_detector(file)
elif choice == "Laplacian":
img = laplacian_edge_detector(file, 5)
else:
img = simple_edge_detector(file, 1, "x")
layout.extend([img])
return layout
def Detect_wo_layout(file, choice, kernel, order, direction):
if choice == "Canny":
img = canny_edge_detector(file)
elif choice == "Sobel":
img = sobel_edge_detector(file)
elif choice == "Laplacian":
img = laplacian_edge_detector(file, kernel)
else:
img = simple_edge_detector(file, order, direction)
return img
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", label="Input Image")
kernel = gr.Slider(minimum=1, maximum=7, step=2, value=3, label="kernel_size", visible=False)
order = gr.Radio([1, 2], value=1, label="Derivative Order", visible=False)
direction = gr.Radio(["x", "y"], value="x", label="Derivative Direction", visible=False)
radio = gr.Radio(["Canny", "Simple", "Sobel", "Laplacian"], value="Canny", label="Type of Edge Detector")
with gr.Column():
image_output = gr.Image(label="Output Image")
gr.Examples(examples, inputs=[image_input])
radio.change(fn=Detect, inputs=[image_input, radio], outputs=[kernel, order, direction, image_output])
kernel.change(fn=Detect_wo_layout, inputs=[image_input, radio, kernel, order, direction], outputs=[image_output])
order.change(fn=Detect_wo_layout, inputs=[image_input, radio, kernel, order, direction], outputs=[image_output])
direction.change(fn=Detect_wo_layout, inputs=[image_input, radio, kernel, order, direction], outputs=[image_output])
image_input.change(fn=Detect_wo_layout, inputs=[image_input, radio, kernel, order, direction], outputs=[image_output])
demo.launch()