File size: 8,281 Bytes
b27de9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e56df02
b27de9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e56df02
b27de9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e56df02
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import streamlit as st

from easynmt import EasyNMT

from nltk import word_tokenize
from simalign import SentenceAligner

import re
import penman

import amrlib
from amrlib.graph_processing.annotator import add_lemmas
from amrlib.alignments.rbw_aligner import RBWAligner

# Find a node corresponding targetWord in the graph:
def getTargetWordNode(segmentTokens, aligner, alignments, target):
    # Get target word in English:
    if target in segmentTokens:
        targetIndexFr = segmentTokens.index(target)
        
        targetIndexesEn = [i for i in alignments['mwmf'] if i[0]==targetIndexFr]
        if len(targetIndexesEn) > 0:
            targetIndexEn = targetIndexesEn[0][1]
                
            # Get a full name of the graph node:
            if aligner.alignments[targetIndexEn] != None:
                nodeConcepts = [i for i in re.split(',|\(|\"|\'', str(aligner.alignments[targetIndexEn])) if i.strip() != '']
                return nodeConcepts[0]+' / '+nodeConcepts[2]
            else:
                return 'Error!' # Alignment between target word in French and its English instance not found
        else:
            return 'Error!' # Alignment between target word in French and its English instance not found
    else:
        return 'Error!' # Alignment between target word in French and its English instance not found
    
# Extract a subgraph containing target word with full path (all the node) to it:
def getTargetWordSubGraphFullPath(amrGraph, target):
    stringTmp = [i+' ' for i in re.split('\n', amrGraph) if i[0] !='#']

    stringTmp2 = []
    for s in stringTmp:
        stringTmp2+=[i for i in re.split('(:\w+\s|:\w+-\w+\s)', s) if i.strip() !='']
    
    string = []
    for s in stringTmp2:
        string+=[i for i in re.split('(\(|\))', s) if i.strip() !='']    
    
    openListGlobal = []
    openList = []
    subGraph = ""
    subGraphGlobal = []
    
    flag = False
    stop = False
    for i in range(len(string)):
        if flag:
            if string[i] == '(':
                openList.append('(')
                subGraph+=string[i]
            elif string[i] == ')':
                openList.pop()
                if openList == []:
                    flag = False
                    stop = True
                    subGraph+=')'
                    subGraphGlobal.append(subGraph)
                else:
                    subGraph+=string[i]
            else:
                subGraph+=string[i]
        else:
            if target in string[i].strip():
                flag = True
                subGraph+=string[i]
                openList.append('(')
            else:
                if not stop and string[i] == '(':
                    openListGlobal.append('(')
                    subGraphGlobal.append(string[i])
                elif not stop and string[i] == ')':
                    openListGlobal.pop()
                    while subGraphGlobal[-1] != '(':
                        subGraphGlobal.pop()
                    subGraphGlobal.pop()
                    subGraphGlobal.pop()
                elif not stop:
                    subGraphGlobal.append(string[i])
                    
    for i in openListGlobal:
        if i=='(':
            subGraphGlobal.append(')')
            
    resultGraph = ""
    for i in subGraphGlobal:
        resultGraph+=i
    
    # Fix the formatting:
    g = penman.decode(resultGraph)
    
    return penman.encode(g)

def main():
    st.header('Abstract Meaning Representation based summary of French text', divider='blue')
    
    #segmentFr = st.text_area(
    #"Text to summarize:",
    #"Article 1 : Occupations ou utilisations du sol interdites\n\n"
    #"1) Dans l’ensemble de la zone sont interdits :\n\n"
    #"Les pylônes et poteaux, supports d’enseignes et d’antennes d’émission ou de réception de \n"
    #"signaux radioélectriques.",
    #height=170,
    #)#.replace('\n',' ')
    
    segmentFr = st.text_area(
    "Text to summarize:",
    "Article 2 : Occupations ou utilisations du sol soumises à des conditions particulières\n\n"
    "2) Dans les périmètres en bordure des cours d’eau définis dans les annexes sanitaires du PLU :\n\n"
    "− Seules les clôtures en grillage pourront être autorisées à condition qu'elles soient conçues de\n"
    "manière à ne pas faire obstacle au libre écoulement des eaux.",
    height=170,
    )

    ## Alternative example:
    #segmentFr = st.text_area(
    #"Text to summarize:",
    #"Article 1: Le classement interdit tout changement d'affectation ou tout mode d'occupation du sol de nature à compromettre la conservation, la protection ou la création des boisements. Dans les bois, forêts ou parcs situés sur le territoire de communes où l'établissement d'un plan d'occupation des sols a été prescrit mais où ce plan n'a pas encore été rendu public, ainsi que dans tout espace boisé classé, les coupes et abattages d'arbres sont soumis à autorisation préalable.",
    #height=170,
    #)
    
    #targetWord = st.text_input('Keyword:', 'Occupations')
    targetWord = st.text_input('Keyword:', 'clôtures')
    ##targetWord = st.text_input('Keyword:', 'compromettre')
    
    if st.button('Summarize'):
        # Fix input formatting:
        segmentFr = segmentFr.replace('\n',' ')
        
        #st.code(segmentFr)
        
        # Translate segment into English:
        model = EasyNMT('opus-mt')
        #segmentEn = model.translate(segmentFr.lower() , source_lang='fr', target_lang='en')
        segmentEn = model.translate(segmentFr , source_lang='fr', target_lang='en')
        
        # Get an AMR graph:
        stog = amrlib.load_stog_model(model_dir='model_stog')
        inputGraph = stog.parse_sents([segmentEn])
        
        ## Output the resulting graph:
        #print(inputGraph[0])
        
        # Get tokenized representation of segment in French:
        segmentFrTokens = word_tokenize(segmentFr, language='french')
        
        # Get tokenized representation of segment in English:
        penmanGraph = add_lemmas(inputGraph[0], snt_key='snt')
        
        aligner = RBWAligner.from_penman_w_json(penmanGraph)
        segmentEnTokens = aligner.lemmas
        
        # Get alignments between original version and translation:
        myaligner = SentenceAligner(model="bert", token_type="bpe", matching_methods="mai")
        alignments = myaligner.get_word_aligns(segmentFrTokens, segmentEnTokens)
        
        # Find a node corresponding targetWord in the graph:
        targetNode = getTargetWordNode(segmentFrTokens, aligner, alignments, targetWord)
        
        # Check if targetNode is in the graph:
        errorFlag = False
        if targetNode not in inputGraph[0]:
            #if targetWord in inputGraph[0]:
            if targetWord in ''.join(inputGraph[0].split('\n')[1:]):
                targetNode = targetWord
            else:
                errorFlag = True
                
        # Extract a subgraph containing target word with full path (all the node) to it:
        if not errorFlag:
            if targetNode != 'Error!':
                targetSubGraph = getTargetWordSubGraphFullPath(inputGraph[0], targetNode)
                #print(targetSubGraph)
                
                # Generate text from given AMR-graph:
                gtos = amrlib.load_gtos_model(model_dir='model_gtos')
                rulesEn, _ = gtos.generate([targetSubGraph])
                
                # Remove "1." from the text:
                rulesEn = [re.sub('\d. ', '', rulesEn[0])]
                
                # Translate it back to French
                rulesFr = model.translate(rulesEn[0], source_lang='en', target_lang='fr')
                #print(rulesEn[0])
                #print(rulesFr)
        
                st.write("Summary: ", rulesFr)
            else:
                #print('Alignment between target word in French and its English instance not found')
                st.write('Error! Alignment between target word in French and its English instance not found')
        else:
            #print('Error! Cannot find keyword in the graph')
            st.write('Error! Cannot find keyword in the graph')
    
if __name__ == "__main__":
    main()