File size: 9,750 Bytes
4df8249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import gc
import yaml
import torch
from transformers import GenerationConfig
from models import alpaca, stablelm, koalpaca, flan_alpaca, mpt
from models import camel, t5_vicuna, vicuna, starchat, redpajama, bloom
from models import baize, guanaco, falcon, kullm, replit, airoboros
from models import samantha_vicuna, wizard_coder, xgen, freewilly
from models import byom

cuda_availability = False
available_vrams_gb = 0
mps_availability = False

if torch.cuda.is_available():
    cuda_availability = True
    available_vrams_mb = sum(
        [
            torch.cuda.get_device_properties(i).total_memory 
            for i in range(torch.cuda.device_count())
        ]
    ) / 1024. / 1024
    
if torch.backends.mps.is_available():
    mps_availability = True
 
def initialize_globals_byom(
    base, ckpt, model_cls, tokenizer_cls, 
    bos_token_id, eos_token_id, pad_token_id,
    mode_cpu, model_mps, mode_8bit, mode_4bit, mode_full_gpu
):
    global model, model_type, stream_model, tokenizer
    global model_thumbnail_tiny, device
    global gen_config, gen_config_raw
    global gen_config_summarization

    model_type = "custom"

    model, tokenizer = byom.load_model(
        base=base,
        finetuned=ckpt,
        mode_cpu=mode_cpu,
        mode_mps=mode_mps,
        mode_full_gpu=mode_full_gpu,
        mode_8bit=mode_8bit,
        mode_4bit=mode_4bit,
        model_cls=model_cls if model_cls != "" else None,
        tokenizer_cls=tokenizer_cls if tokenizer_cls != "" else None
    )
    
    stream_model = model
    gen_config, gen_config_raw = get_generation_config("configs/response_configs/default.yaml")
    gen_config_summarization, _ = get_generation_config("configs/summarization_configs/default.yaml")
    if bos_token_id != "" or bos_token_id.isdigit():
        gen_config.bos_token_id = int(bos_token_id)

    if eos_token_id != "" or eos_token_id.isdigit():
        gen_config.eos_token_id = int(eos_token_id)

    if pad_token_id != "" or pad_token_id.isdigit():
        gen_config.pad_token_id = int(pad_token_id)       

def initialize_globals(args):
    global device, model_thumbnail_tiny
    global model, model_type, stream_model, tokenizer
    global gen_config, gen_config_raw    
    global gen_config_summarization
    
    model_type_tmp = "alpaca"
    if "stabilityai/freewilly2" in args.base_url.lower():
        model_type_tmp = "free-willy"
    elif "upstage/llama-" in args.base_url.lower():
        model_type_tmp = "upstage-llama"
    elif "llama-2" in args.base_url.lower():
        model_type_tmp = "llama2"
    elif "xgen" in args.base_url.lower():
        model_type_tmp = "xgen"
    elif "orca_mini" in args.base_url.lower():
        model_type_tmp = "orcamini"
    elif "open-llama" in args.base_url.lower():
        model_type_tmp = "openllama"
    elif "wizardcoder" in args.base_url.lower():
        model_type_tmp = "wizard-coder"
    elif "wizard-vicuna" in args.base_url.lower():
        model_type_tmp = "wizard-vicuna"
    elif "llms/wizardlm" in args.base_url.lower():
        model_type_tmp = "wizardlm"
    elif "chronos" in args.base_url.lower():
        model_type_tmp = "chronos"
    elif "lazarus" in args.base_url.lower():
        model_type_tmp = "lazarus"
    elif "samantha" in args.base_url.lower():
        model_type_tmp = "samantha-vicuna"
    elif "airoboros" in args.base_url.lower():
        model_type_tmp = "airoboros"
    elif "replit" in args.base_url.lower():
        model_type_tmp = "replit-instruct"
    elif "kullm" in args.base_url.lower():
        model_type_tmp = "kullm-polyglot"
    elif "nous-hermes" in args.base_url.lower():
        model_type_tmp = "nous-hermes"
    elif "guanaco" in args.base_url.lower():
        model_type_tmp = "guanaco"
    elif "wizardlm-uncensored-falcon" in args.base_url.lower():
        model_type_tmp = "wizard-falcon"        
    elif "falcon" in args.base_url.lower():
        model_type_tmp = "falcon"
    elif "baize" in args.base_url.lower():
        model_type_tmp = "baize"
    elif "stable-vicuna" in args.base_url.lower():
        model_type_tmp = "stable-vicuna"        
    elif "vicuna" in args.base_url.lower():
        model_type_tmp = "vicuna"
    elif "mpt" in args.base_url.lower():
        model_type_tmp = "mpt"
    elif "redpajama-incite-7b-instruct" in args.base_url.lower():
        model_type_tmp = "redpajama-instruct"
    elif "redpajama" in args.base_url.lower():
        model_type_tmp = "redpajama"
    elif "starchat" in args.base_url.lower():
        model_type_tmp = "starchat"
    elif "camel" in args.base_url.lower():
        model_type_tmp = "camel"
    elif "flan-alpaca" in args.base_url.lower():
        model_type_tmp = "flan-alpaca"
    elif "openassistant/stablelm" in args.base_url.lower():
        model_type_tmp = "os-stablelm"
    elif "stablelm" in args.base_url.lower():
        model_type_tmp = "stablelm"
    elif "fastchat-t5" in args.base_url.lower():
        model_type_tmp = "t5-vicuna"
    elif "koalpaca-polyglot" in args.base_url.lower():
        model_type_tmp = "koalpaca-polyglot"
    elif "alpacagpt4" in args.ft_ckpt_url.lower():
        model_type_tmp = "alpaca-gpt4"
    elif "alpaca" in args.ft_ckpt_url.lower():
        model_type_tmp = "alpaca"
    elif "llama-deus" in args.ft_ckpt_url.lower():
        model_type_tmp = "llama-deus"
    elif "vicuna-lora-evolinstruct" in args.ft_ckpt_url.lower():
        model_type_tmp = "evolinstruct-vicuna"
    elif "alpacoom" in args.ft_ckpt_url.lower():
        model_type_tmp = "alpacoom"
    elif "guanaco" in args.ft_ckpt_url.lower():
        model_type_tmp = "guanaco"
    else:
        print("unsupported model type")
        quit()

    print(f"determined model type: {model_type_tmp}")        

    device = "cpu"
    if args.mode_cpu:
        device = "cpu"
    elif args.mode_mps:
        device = "mps"
    else:
        device = "cuda"
    
    try:
        if model is not None:
            del model

        if stream_model is not None:
            del stream_model

        if tokenizer is not None:
            del tokenizer

        gc.collect()
        
        if device == "cuda":
            torch.cuda.empty_cache()
        elif device == "mps":
            torch.mps.empty_cache()
            
    except NameError:
        pass
        
    model_type = model_type_tmp
    load_model = get_load_model(model_type_tmp)
    model, tokenizer = load_model(
        base=args.base_url,
        finetuned=args.ft_ckpt_url,
        mode_cpu=args.mode_cpu,
        mode_mps=args.mode_mps,
        mode_full_gpu=args.mode_full_gpu,
        mode_8bit=args.mode_8bit,
        mode_4bit=args.mode_4bit,
        force_download_ckpt=args.force_download_ckpt,
        local_files_only=args.local_files_only
    )
    model.eval()
    
    model_thumbnail_tiny = args.thumbnail_tiny
    gen_config, gen_config_raw = get_generation_config(args.gen_config_path)
    gen_config_summarization, _ = get_generation_config(args.gen_config_summarization_path)
    stream_model = model
        
def get_load_model(model_type):
    if model_type == "alpaca" or \
        model_type == "alpaca-gpt4" or \
        model_type == "llama-deus" or \
        model_type == "nous-hermes" or \
        model_type == "lazarus" or \
        model_type == "chronos" or \
        model_type == "wizardlm" or \
        model_type == "openllama" or \
        model_type == "orcamini" or \
        model_type == "llama2" or \
        model_type == "upstage-llama":
        return alpaca.load_model
    elif model_type == "free-willy":
        return freewilly.load_model
    elif model_type == "stablelm" or model_type == "os-stablelm":
        return stablelm.load_model
    elif model_type == "koalpaca-polyglot":
        return koalpaca.load_model
    elif model_type == "kullm-polyglot":
        return kullm.load_model
    elif model_type == "flan-alpaca":
        return flan_alpaca.load_model
    elif model_type == "camel":
        return camel.load_model
    elif model_type == "t5-vicuna":
        return t5_vicuna.load_model
    elif model_type == "stable-vicuna":
        return vicuna.load_model
    elif model_type == "starchat":
        return starchat.load_model
    elif model_type == "wizard-coder":
        return wizard_coder.load_model
    elif model_type == "mpt":
        return mpt.load_model
    elif model_type == "redpajama" or \
        model_type == "redpajama-instruct":
        return redpajama.load_model
    elif model_type == "vicuna":
        return vicuna.load_model
    elif model_type == "evolinstruct-vicuna" or \
        model_type == "wizard-vicuna":
        return alpaca.load_model
    elif model_type == "alpacoom":
        return bloom.load_model
    elif model_type == "baize":
        return baize.load_model
    elif model_type == "guanaco":
        return guanaco.load_model
    elif model_type == "falcon" or model_type == "wizard-falcon":
        return falcon.load_model
    elif model_type == "replit-instruct":
        return replit.load_model
    elif model_type == "airoboros":
        return airoboros.load_model
    elif model_type == "samantha-vicuna":
        return samantha_vicuna.load_model
    elif model_type == "xgen":
        return xgen.load_model
    else:
        return None
    
def get_generation_config(path):
    with open(path, 'rb') as f:
        generation_config = yaml.safe_load(f.read())
        
    generation_config = generation_config["generation_config"]

    return GenerationConfig(**generation_config), generation_config

def get_constraints_config(path):
    with open(path, 'rb') as f:
        constraints_config = yaml.safe_load(f.read())
        
    return ConstraintsConfig(**constraints_config), constraints_config["constraints"]