konerusudhir's picture
Added classes count
8bfde08
# -*- coding: utf-8 -*-
"""mp_art_classification.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1mCMy50B9xHW2WdGNlxTq-wObAe-eMsQ5
"""
import os
import shutil
import math
import glob
import json
import pickle
import requests
import time
import re
import string
from datetime import datetime
import pandas as pd
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import tensorflow as tf
if 'workspace/semantic_search' in os.getcwd():
ROOT_FOLDER = os.path.join("./hf", "mp_art_classification")
else:
ROOT_FOLDER = './'
PRE_TRAINED_MODELS_FOLDER = os.path.join(ROOT_FOLDER, "pre_trained_models")
TRAINED_WEIGHTS_FOLDER = os.path.join(ROOT_FOLDER, "trained_weights")
def clean_directories():
shutil.rmtree(PRE_TRAINED_MODELS_FOLDER, ignore_errors=True)
# clean_directories()
def create_directories():
if not os.path.exists(PRE_TRAINED_MODELS_FOLDER):
os.mkdir(PRE_TRAINED_MODELS_FOLDER)
create_directories()
from transformers import CLIPTokenizer, CLIPImageProcessor, TFCLIPTextModel, TFCLIPVisionModel
clip_model_id = "openai/clip-vit-large-patch14"
vision_model = TFCLIPVisionModel.from_pretrained(
clip_model_id,
cache_dir=PRE_TRAINED_MODELS_FOLDER)
vision_processor = CLIPImageProcessor.from_pretrained(clip_model_id)
genre_classes_path = os.path.join(ROOT_FOLDER,'genre_class.txt')
# TSV headers [id, class]
genre_classes_df = pd.read_csv(genre_classes_path, sep = ' ', header=None)
# print(genre_train_df.iloc[:,1])
genre_classes = []
for index, row in genre_classes_df.iterrows():
genre_classes.append(row[1])
# print(genre_classes)
classes_count = len(genre_classes)
base_learning_rate = 0.0001
steps_per_execution = 200
def create_classification_model():
# Preprocess images
inputs = tf.keras.Input(shape=(3, 224, 224))
rescaling_layer = tf.keras.layers.Rescaling(1.0/255, offset=0.0)
rescaled_input = rescaling_layer(inputs)
# processed_inputs = vision_processor(images=[inputs], return_tensors="tf")
# print(inputs)
vision_model.trainable=False
base_model_output = vision_model(rescaled_input)
current_layer = base_model_output.pooler_output
hidden_layers_nodes = [1024]
for node_count in hidden_layers_nodes:
hidden_layer = tf.keras.layers.Dense(node_count, activation='relu')
dropout_layer = tf.keras.layers.Dropout(.2, input_shape=(2,))
current_layer = hidden_layer(dropout_layer(current_layer))
prediction_layer = tf.keras.layers.Dense(
classes_count, activation='softmax')
outputs = prediction_layer(current_layer)
model = tf.keras.Model(inputs, outputs)
model.compile(
# Used leagcy optimizer due to tf 2.11 release issues with MACOS
# optimizer=tf.keras.optimizers.Adam(learning_rate=base_learning_rate),
optimizer=tf.keras.optimizers.legacy.Adam(
learning_rate=base_learning_rate),
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=['accuracy']
# steps_per_execution=steps_per_execution
)
return model
model = create_classification_model()
model.summary()
latest_weights = tf.train.latest_checkpoint(TRAINED_WEIGHTS_FOLDER)
model.load_weights(latest_weights)
# image_path = tf.constant('./hf/mp_image_search/examples/e1.jpeg')
# image = tf.io.read_file("/Users/skoneru/workspace/semantic_search/hf/mp_image_search/examples/e1.jpeg")
# print(image)
# decoded_image = tf.io.decode_image(
# contents = image,
# channels = 3,
# expand_animations = False
# )
# print(decoded_image.shape)
# resized_image = tf.image.resize_with_pad(
# image = decoded_image,
# target_height = 224,
# target_width = 224,
# )
# print(resized_image.shape)
# # constant_new = tf.constant(
# # resized_image, dtype=tf.float32, shape=(224,224,3), name='input_image'
# # )
# transposed_image = tf.transpose(
# resized_image)
# print(transposed_image.shape)
# # constant = tf.constant(
# # transposed_image, value_index=(3,224,224)
# # )
# # constant_new = tf.constant(
# # transposed_image, dtype=tf.float32, shape=(3,224,224), name='input_image'
# # )
# ndarray = tf.make_ndarray(
# tf.Variable(transposed_image, shape=(3,224,224))
# )
# # variable = tf.Variable(constant_new)
# # print(constant_new)
# # print(inputs)
# image_path = './hf/mp_image_search/examples/e1.jpeg'
# img = Image.open(image_path).convert('RGB')
# desired_size =224
# old_size = img.size # old_size[0] is in (width, height) format
# ratio = float(desired_size)/max(old_size)
# new_size = tuple([int(x*ratio) for x in old_size])
# img.thumbnail((desired_size, desired_size), Image.ANTIALIAS)
# new_im = Image.new("RGB", (desired_size, desired_size))
# new_im.paste(img, ((desired_size-new_size[0])//2,
# (desired_size-new_size[1])//2))
# # new_im.show()
# np_array = np.array(img)
# print(np_array.shape)
# transposed_np_array = np.transpose(np_array)
# print(transposed_np_array.shape)
# images_list = []
# images_list.append(transposed_np_array)
# np_input = np.asarray(images_list)
# print(np_input.shape)
# result = model.predict(np_input)
# print(result.flatten())
import gradio as gr
def process_image(input_image):
desired_size =224
old_size = input_image.size # old_size[0] is in (width, height) format
ratio = float(desired_size)/max(old_size)
new_size = tuple([int(x*ratio) for x in old_size])
input_image.thumbnail((desired_size, desired_size), Image.ANTIALIAS)
new_im = Image.new("RGB", (desired_size, desired_size))
new_im.paste(input_image, ((desired_size-new_size[0])//2,
(desired_size-new_size[1])//2))
# new_im.show()
np_array = np.array(input_image)
# print(np_array.shape)
transposed_np_array = np.transpose(np_array)
# print(transposed_np_array.shape)
images_list = []
images_list.append(transposed_np_array)
np_input = np.asarray(images_list)
# print(np_input.shape)
return model.predict(np_input).flatten()
def predict(input_image):
# print(input_image)
# img = Image.create(input_image)
pil_image_object = Image.fromarray(input_image)
probs = process_image(pil_image_object)
return {genre_classes[i]: float(probs[i]) for i in range(len(genre_classes))}
image_path_prefx = os.path.join(ROOT_FOLDER,'examples')
examples = [f"{image_path_prefx}/e{n}.jpeg" for n in range(4)]
interpretation='shap'
title = "MP Art Classifier"
description = "<b>Classifies Art into 10 Genres</b>"
theme = 'grass'
gr.Interface(
fn=predict,
inputs=gr.inputs.Image(shape=((512,512))),
outputs=gr.outputs.Label(num_top_classes=5),
title = title,
examples = examples,
theme = theme,
interpretation = interpretation,
description = description
).launch(debug=True)
clean_directories()