work?
Browse files
app.py
CHANGED
@@ -1,18 +1,19 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
#from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
#model = AutoModel.from_pretrained("kolbeins/model")
|
6 |
-
pipeline = pipeline(task="text-generation", model="kolbeins/model")
|
7 |
-
#model = AutoModelForCausalLM.from_pretrained("kolbeins/model")
|
8 |
-
#tokenizer = AutoTokenizer.from_pretrained("kolbeins/model")
|
9 |
|
10 |
def chat(input_txt):
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
#response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
15 |
return response
|
16 |
|
|
|
|
|
17 |
demo = gr.Interface(fn=chat, inputs="text", outputs="text")
|
18 |
demo.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
#from transformers import pipeline
|
3 |
#from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("kolbeins/model")
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("kolbeins/model")
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def chat(input_txt):
|
11 |
+
inputs = tokenizer(input_txt, return_tensors="pt")
|
12 |
+
outputs = model.generate(**inputs)
|
13 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
14 |
return response
|
15 |
|
16 |
+
|
17 |
+
|
18 |
demo = gr.Interface(fn=chat, inputs="text", outputs="text")
|
19 |
demo.launch(share=True)
|