another test ?
Browse files
app.py
CHANGED
@@ -1,17 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
#model = AutoModel.from_pretrained("kolbeins/model")
|
6 |
-
|
7 |
-
model = AutoModelForCausalLM.from_pretrained("kolbeins/model")
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained("kolbeins/model")
|
9 |
|
10 |
def chat(input_txt):
|
11 |
-
|
12 |
-
inputs = tokenizer(input_txt, return_tensors="pt")
|
13 |
-
outputs = model.generate(inputs["input_ids"], max_length=150, num_return_sequences=1)
|
14 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
15 |
return response
|
16 |
|
17 |
demo = gr.Interface(fn=chat, inputs="text", outputs="text")
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
#from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
#model = AutoModel.from_pretrained("kolbeins/model")
|
6 |
+
pipeline = pipeline(task="text-generation", model="kolbeins/model")
|
7 |
+
#model = AutoModelForCausalLM.from_pretrained("kolbeins/model")
|
8 |
+
#tokenizer = AutoTokenizer.from_pretrained("kolbeins/model")
|
9 |
|
10 |
def chat(input_txt):
|
11 |
+
response = pipeline(input_txt)
|
12 |
+
#inputs = tokenizer(input_txt, return_tensors="pt")
|
13 |
+
#outputs = model.generate(inputs["input_ids"], max_length=150, num_return_sequences=1)
|
14 |
+
#response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
15 |
return response
|
16 |
|
17 |
demo = gr.Interface(fn=chat, inputs="text", outputs="text")
|