Spaces:
Runtime error
Runtime error
File size: 37,766 Bytes
8948e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 |
import pandas as pd
import numpy as np
import skimage.io
from pathlib import Path
import torch
import scipy
from PIL import Image, ImageFilter, ImageChops
# from config import model_config
from period_calculation.config import model_config
# Function to add Gaussian noise
def add_microscope_noise(base_image_as_numpy, noise_intensity):
###### The code below is for adding noise to the image
# noise intensity is a number between 0 and 1
# --- priginal implementation was provided by Michał Bykowski
# --- and adapted
# This routine works with PIL images and numpy internally (changing formats as it goes)
# but the input and output are numpy arrays
def add_noise(image, mean=0, std_dev=50): # std_dev impacts the amount of noise
# Generating noise
noise = np.random.normal(mean, std_dev, (image.height, image.width))
# Adding noise to the image
noisy_image = np.array(image) + noise
# Ensuring the values remain within valid grayscale range
noisy_image = np.clip(noisy_image, 0, 255)
return Image.fromarray(noisy_image.astype('uint8'))
base_image = Image.fromarray(base_image_as_numpy)
gray_value = 128
gray = Image.new('L', base_image.size, color=gray_value)
gray = add_noise(gray, std_dev=noise_intensity * 76)
gray = gray.filter(ImageFilter.GaussianBlur(radius=3))
gray = add_noise(gray, std_dev=noise_intensity * 23)
gray = gray.filter(ImageFilter.GaussianBlur(radius=2))
gray = add_noise(gray, std_dev=noise_intensity * 15)
# soft light works as in Photoshop
# Superimposes two images on top of each other using the Soft Light algorithm
result = ImageChops.soft_light(base_image, gray)
return np.array(result)
def detect_boundaries(mask, axis):
# calculate the boundaries of the mask
#axis = 0 results in x_from, x_to
#axis = 1 results in y_from, y_to
sum = mask.sum(axis=axis)
ind_from = min(sum.nonzero()[0])
ind_to = max(sum.nonzero()[0])
return ind_from, ind_to
def add_symmetric_filling_beyond_mask(img, mask):
for x in range(img.shape[1]):
if sum(mask[:, x]) != 0: #if there is at least one nonzero index
nonzero_indices = mask[:, x].nonzero()[0]
y_min = min(nonzero_indices)
y_max = max(nonzero_indices)
if y_max == y_min: #there is only one point
img[:, x] = img[y_min, x]
else:
next = y_min + 1
step = +1 # we start by going upwards
for y in reversed(range(y_min)):
img[y, x] = img[next, x]
if next == y_max or next == y_min: #we hit the boundaries - we reverse
step *= -1 #reverse direction
next += step
next = y_max - 1
step = -1 # we start by going downwards
for y in range(y_max + 1, img.shape[0]): #we hit the boundaries - we reverse
img[y, x] = img[next, x]
if next == y_max or next == y_min:
step *= -1 # reverse direction
next += step
return img
class AbstractDataset(torch.utils.data.Dataset):
def __init__(self,
model = None,
transforms=[],
#### distortions during training ####
hv_symmetry=True, # True or False
min_horizontal_subsampling = 50, # None to turn off; or minimal percentage of horizontal size of the image
min_vertical_subsampling = 70, # None to turn off; or minimal percentage of vertical size of the image
max_random_tilt = 3, # None to turn off; or maximum tilt in degrees
max_add_colors_to_histogram = 10, # 0 to turn off; or points of the histogram to be added
max_remove_colors_from_histogram = 30, # 0 to turn off; or points of the histogram to be removed
max_noise_intensity = 3.0, # 0.0 to turn off; or max intensity of the noise
gaussian_phase_transforms_epoch=None, # None to turn off; or number of the epoch when the gaussian phase starts
min_horizontal_subsampling_gaussian_phase = 30, # None to turn off; or minimal percentage of horizontal size of the image
min_vertical_subsampling_gaussian_phase = 70, # None to turn off; or minimal percentage of vertical size of the image
max_random_tilt_gaussian_phase = 2, # None to turn off; or maximum tilt in degrees
max_add_colors_to_histogram_gaussian_phase = 10, # 0 to turn off; or points of the histogram to be added
max_remove_colors_from_histogram_gaussian_phase = 60, # 0 to turn off; or points of the histogram to be removed
max_noise_intensity_gaussian_phase = 3.5, # 0.0 to turn off; or max intensity of the noise
#### controling variables ####
transform_level=2, # 0 - no transforms, 1 - only the basic transform, 2 - all transforms, -1 - subsampling for high images
retain_raw_images=False,
retain_masks=False):
self.model = model # we need that to check epoch number during training
self.hv_symmetry = hv_symmetry
self.min_horizontal_subsampling = min_horizontal_subsampling
self.min_vertical_subsampling = min_vertical_subsampling
self.max_random_tilt = max_random_tilt
self.max_add_colors_to_histogram = max_add_colors_to_histogram
self.max_remove_colors_from_histogram = max_remove_colors_from_histogram
self.max_noise_intensity = max_noise_intensity
self.gaussian_phase_transforms_epoch = gaussian_phase_transforms_epoch
self.min_horizontal_subsampling_gaussian_phase = min_horizontal_subsampling_gaussian_phase
self.min_vertical_subsampling_gaussian_phase = min_vertical_subsampling_gaussian_phase
self.max_random_tilt_gaussian_phase = max_random_tilt_gaussian_phase
self.max_add_colors_to_histogram_gaussian_phase = max_add_colors_to_histogram_gaussian_phase
self.max_remove_colors_from_histogram_gaussian_phase = max_remove_colors_from_histogram_gaussian_phase
self.max_noise_intensity_gaussian_phase = max_noise_intensity_gaussian_phase
self.image_height = model_config['image_height']
self.image_width = model_config['image_width']
self.transform_level = transform_level
self.retain_raw_images = retain_raw_images
self.retain_masks = retain_masks
self.transforms = transforms
def get_image_and_mask(self, row):
raise NotImplementedError("Subclass needs to implement this method")
def load_and_transform_image_and_mask(self, row):
img, mask = self.get_image_and_mask(row)
angle = row['angle']
#check if gaussian phase is on
if self.gaussian_phase_transforms_epoch is not None and self.model.current_epoch >= self.gaussian_phase_transforms_epoch:
max_random_tilt = self.max_random_tilt_gaussian_phase
max_noise_intensity = self.max_noise_intensity_gaussian_phase
min_horizontal_subsampling = self.min_horizontal_subsampling_gaussian_phase
min_vertical_subsampling = self.min_vertical_subsampling_gaussian_phase
max_add_colors_to_histogram = self.max_add_colors_to_histogram_gaussian_phase
max_remove_colors_from_histogram = self.max_remove_colors_from_histogram_gaussian_phase
else:
max_random_tilt = self.max_random_tilt
max_noise_intensity = self.max_noise_intensity
min_horizontal_subsampling = self.min_horizontal_subsampling
min_vertical_subsampling = self.min_vertical_subsampling
max_add_colors_to_histogram = self.max_add_colors_to_histogram
max_remove_colors_from_histogram = self.max_remove_colors_from_histogram
if self.transform_level >= 2 and max_random_tilt is not None:
####### RANDOM TILT
angle += np.random.uniform(-max_random_tilt, max_random_tilt)
img = scipy.ndimage.rotate(img, 90 - angle, reshape=True, order=3) # HORIZONTAL POSITION
###the part of the image that is added after rotation is all black (0s)
mask = scipy.ndimage.rotate(mask, 90 - angle, reshape=True, order = 0) # HORIZONTAL POSITION
#order = 0 is the nearest neighbor interpolation, so the mask is not interpolated
############# CROP
x_from, x_to = detect_boundaries(mask, axis=0)
y_from, y_to = detect_boundaries(mask, axis=1)
#crop the image to the verical and horizontal limits.
img = img[y_from:(y_to + 1), x_from:(x_to + 1)]
mask = mask[y_from:(y_to + 1), x_from:(x_to + 1)]
img_raw = img.copy()
if self.transform_level >= 2:
########## ADDING NOISE
if max_noise_intensity > 0.0:
noise_intensity = np.random.random() * max_noise_intensity
noisy_img = add_microscope_noise(img, noise_intensity=noise_intensity)
img[mask] = noisy_img[mask]
if self.transform_level == -1:
#special case where we take at most 300 middle pixels from the image
# (vertical subsampling)
# to handle very latge images correctly
x_from, x_to = detect_boundaries(mask, axis=0)
y_from, y_to = detect_boundaries(mask, axis=1)
y_size = y_to - y_from + 1
random_size = 300 #not so random, ay?
if y_size > random_size:
random_start = y_size // 2 - random_size // 2
y_from = random_start
y_to = random_start + random_size - 1
img = img[y_from:(y_to + 1), x_from:(x_to + 1)]
mask = mask[y_from:(y_to + 1), x_from:(x_to + 1)]
# recrop the image if necessary
# -- even after only horizontal subsampling it may be necessary to recrop the image
x_from, x_to = detect_boundaries(mask, axis=0)
y_from, y_to = detect_boundaries(mask, axis=1)
img = img[y_from:(y_to + 1), x_from:(x_to + 1)]
mask = mask[y_from:(y_to + 1), x_from:(x_to + 1)]
if self.transform_level >= 1:
############## HORIZONTAL SUBSAMPLING
if min_horizontal_subsampling is not None:
x_size = x_to - x_from + 1
# add some random horizontal shift
random_size = np.random.randint(x_size * min_horizontal_subsampling / 100.0, x_size + 1)
random_start = np.random.randint(0, x_size - random_size + 1) + x_from
img = img[:, random_start:(random_start + random_size)]
mask = mask[:, random_start:(random_start + random_size)]
############ VERTICAL SUBSAMPLING
if min_vertical_subsampling is not None:
x_from, x_to = detect_boundaries(mask, axis=0)
y_from, y_to = detect_boundaries(mask, axis=1)
y_size = y_to - y_from + 1
random_size = np.random.randint(y_size * min_vertical_subsampling / 100.0, y_size + 1)
random_start = np.random.randint(0, y_size - random_size + 1) + y_from
y_from = random_start
y_to = random_start + random_size - 1
img = img[y_from:(y_to + 1), x_from:(x_to + 1)]
mask = mask[y_from:(y_to + 1), x_from:(x_to + 1)]
if min_horizontal_subsampling is not None or min_vertical_subsampling is not None:
#recrop the image if necessary
# -- even after only horizontal subsampling it may be necessary to recrop the image
x_from, x_to = detect_boundaries(mask, axis=0)
y_from, y_to = detect_boundaries(mask, axis=1)
img = img[y_from:(y_to + 1), x_from:(x_to + 1)]
mask = mask[y_from:(y_to + 1), x_from:(x_to + 1)]
######### ADD SYMMETRIC FILLING OF THE IMAGE BEYOND THE MASK
#img = add_symmetric_filling_beyond_mask(img, mask)
#This leaves holes in the image, so we will not use it
#plt.imshow(img)
#plt.show()
######### HORIZONTAL AND VERTICAL SYMMETRY.
# When superimposed, the result is 180 degree rotation
if self.transform_level >= 1 and self.hv_symmetry:
for axis in range(2):
if np.random.randint(0, 2) % 2 == 0:
img = np.flip(img, axis = axis)
mask = np.flip(mask, axis = axis)
#plt.imshow(img)
#plt.show()
if self.transform_level >= 2 and (max_add_colors_to_histogram > 0 or max_remove_colors_from_histogram > 0):
lower_bound = np.random.randint(-max_add_colors_to_histogram, max_remove_colors_from_histogram + 1)
upper_bound = np.random.randint(255 - max_remove_colors_from_histogram, 255 + max_add_colors_to_histogram + 1)
# first clip the values outstanding from the range (lower_bound -- upper_bound)
img[mask] = np.clip(img[mask], lower_bound, upper_bound)
# the range (lower_bound -- upper_bound) gets mapped to the range (0--255)
# but only in a portion of the image where mask = True
img[mask] = np.interp(img[mask], (lower_bound, upper_bound), (0, 255)).astype(np.uint8)
#### since preserve_range in skimage.transform.resize is set to False, the image
#### will be converted to float. Consult:
# https://scikit-image.org/docs/stable/api/skimage.transform.html#skimage.transform.resize
# https://scikit-image.org/docs/dev/user_guide/data_types.html
# In our case the image gets conveted to floats ranging 0-1
old_height = img.shape[0]
img = skimage.transform.resize(img, (self.image_height, self.image_width), order=3)
new_height = img.shape[0]
mask = skimage.transform.resize(mask, (self.image_height, self.image_width), order=0, preserve_range=True)
# order = 0 is the nearest neighbor interpolation, so the mask is not interpolated
scale_factor = new_height / old_height
#plt.imshow(img)
#plt.show()
#plt.imshow(mask)
#plt.show()
return img, mask, scale_factor, img_raw
def get_annotations_row(self, idx):
raise NotImplementedError("Subclass needs to implement this method")
def __getitem__(self, idx):
row = self.get_annotations_row(idx)
image, mask, scale_factor, image_raw = self.load_and_transform_image_and_mask(row)
image_data = {
'image': image,
}
for transform in self.transforms:
image_data = transform(**image_data)
# transform operates on image field ONLY of image_data, and returns a dictionary with the same keys
ret_dict = {
'image': image_data['image'],
'period_px': torch.tensor(row['period_nm'] * scale_factor * row['px_per_nm'], dtype=torch.float32),
'filename': row['granum_image'],
'px_per_nm': row['px_per_nm'],
'scale': scale_factor, # the scale factor is used to calculate the true period error
# (before scale) in losses and metrics
'neutral': -self.transforms[0].mean/self.transforms[0].std #value of 0 after the scale transform
}
if self.retain_raw_images:
ret_dict['image_raw'] = image_raw
if self.retain_masks:
ret_dict['mask'] = mask
return ret_dict
def __len__(self):
raise NotImplementedError("Subclass needs to implement this method")
class ImageDataset(AbstractDataset):
def __init__(self, annotations, data_dir: Path, *args, **kwargs):
super().__init__(*args, **kwargs)
self.data_dir = Path(data_dir)
self.id = 1
if isinstance(annotations, str):
annotations = data_dir / annotations #make it a Path object relative to data_dir
if isinstance(annotations, Path):
self.annotations = pd.read_csv(data_dir / annotations)
no_period = ['27_k7 [1]_4.png']
del_img = ['38_k42[1]_19.png', 'n6363_araLL_60kx_6 [1]_0.png', '27_hs8 [1]_5.png', '27_k7 [1]_20.png',
'F1_1_60kx_01 [1]_2.png']
self.annotations = self.annotations[~self.annotations['granum_image'].isin(no_period)]
self.annotations = self.annotations[~self.annotations['granum_image'].isin(del_img)]
else:
self.annotations = annotations
def get_image_and_mask(self, row):
filename = row['granum_image']
img_path = self.data_dir / filename
img_raw = skimage.io.imread(img_path)
img = img_raw[:, :, 0] # all three channels are equal, with the exception
# of the last channel which is the full blue (0,0,255) for outside the mask (so blue channel is 255, red and green are 0)
mask = (img_raw != (0, 0, 255)).any(axis=2)
return img, mask
def get_annotations_row(self, idx):
row = self.annotations.iloc[idx].to_dict()
row['idx'] = idx
return row
def __len__(self):
return len(self.annotations)
class ArtificialDataset(AbstractDataset):
def __init__(self,
min_period = 20,
max_period = 140,
white_fraction_min = 0.15,
white_fraction_max=0.45,
noise_min_sd = 0.0,
noise_max_sd = 100.0,
noise_max_sd_everywhere = 20.0, # 20.0
leftovers_max = 5,
get_real_masks_dataset = None, #None or instance of ImageDataset
*args, **kwargs):
super().__init__(*args, **kwargs)
self.id = 0
self.min_period = min_period
self.max_period = max_period
self.white_fraction_min = white_fraction_min
self.white_fraction_max = white_fraction_max
self.receptive_field_height = model_config['receptive_field_height']
self.stride_height = model_config['stride_height']
self.receptive_field_width = model_config['receptive_field_width']
self.stride_width = model_config['stride_width']
self.noise_min_sd = noise_min_sd
self.noise_max_sd = noise_max_sd
self.noise_max_sd_everywhere = noise_max_sd_everywhere
self.leftovers_max = leftovers_max
self.get_real_masks_dataset = get_real_masks_dataset
def get_image_and_mask(self, row):
# generate a rectangular image of black and white horizontal stripes
# with black stripes varying with white stripes
period_px = row['period_nm'] * row['px_per_nm']
# white occupying 5-20 % of a total period (white+black)
white_px = np.random.randint(period_px * self.white_fraction_min, period_px * self.white_fraction_max + 1)
# mask is rectangle of True values
img = np.zeros((self.image_height, self.image_width), dtype=np.uint8)
mask = np.ones((self.image_height, self.image_width), dtype=bool)
black_px = period_px - white_px
random_start = np.random.randint(0, period_px+1)
for i in range(self.image_height):
if (random_start+i) % (black_px + white_px) < black_px:
# sample width with random numbers from 0 to 101
img[i, :] = np.random.randint(0, 101, self.image_width)
else:
#sample width with random numbers from 156 to 255
img[i, :] = np.random.randint(156, 256, self.image_width)
if self.noise_max_sd_everywhere > self.noise_min_sd:
sd = np.random.uniform(self.noise_min_sd, self.noise_max_sd_everywhere)
noise = np.random.normal(0, sd, (self.image_height, self.image_width))
img = np.clip(img+noise.astype(img.dtype), 0, 255)
if self.noise_max_sd > self.noise_min_sd:
# there is also a metagrid in the image
# consisting of overlapping receptive fields of size 190x42
# with stride 64x4
# the metagrid is 5x102
overlapping_fields_count_height = (self.image_height - self.receptive_field_height) // self.stride_height + 1
overlapping_fields_count_width = (self.image_width - self.receptive_field_width) // self.stride_width + 1
sd = np.random.uniform(self.noise_min_sd, self.noise_max_sd)
noise = np.random.normal(0, sd, (self.image_height, self.image_width))
#there will be some left-over metagrid rectangles
leftovers_count = np.random.randint(1, self.leftovers_max)
for i in range(leftovers_count):
metagrid_row = np.random.randint(0, overlapping_fields_count_height)
metagrid_col = np.random.randint(0, overlapping_fields_count_width)
#zero-out the noise inside the selected metagrid
noise[metagrid_row * self.stride_height:metagrid_row * self.stride_height + self.receptive_field_height + 1, \
metagrid_col * self.stride_width :metagrid_col * self.stride_width + self.receptive_field_width + 1] = 0
#add noise to the image
img = np.clip(img+noise.astype(img.dtype), 0, 255)
if self.get_real_masks_dataset is not None:
ret_dict = self.get_real_masks_dataset.__getitem__(row['idx'] % len(self.get_real_masks_dataset))
mask = ret_dict['mask'] #this mask is already sized target height-by-width
img[mask == False] = 0
return img, mask
def get_annotations_row(self, idx):
return {'idx': idx,
'period_nm': np.random.randint(self.min_period, self.max_period),
'px_per_nm': 1.0,
'granum_image': 'artificial_%d.png' % idx,
'angle': 90}
def __len__(self):
return 237 # number of samples as in real data in the train set (70% of 339 is 237,3)
class AdHocDataset(AbstractDataset):
def __init__(self, images_masks_pxpernm: list[tuple[np.ndarray, np.ndarray, float]], *args, **kwargs):
super().__init__(*args, **kwargs)
self.data = images_masks_pxpernm
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
image, mask, px_per_nm = self.data[idx]
image, mask, scale_factor, image_raw = self.load_and_transform_image_and_mask(image, mask)
image_data = {
'image': image,
}
for transform in self.transforms:
image_data = transform(**image_data)
# transform operates on image field ONLY of image_data, and returns a dictionary with the same keys
ret_dict = {
'image': image_data['image'],
'period_px': torch.tensor(0, dtype=torch.float32),
'filename': str(idx),
'px_per_nm': px_per_nm,
'scale': scale_factor, # the scale factor is used to calculate the true period error
# (before scale) in losses and metrics
'neutral': -self.transforms[0].mean/self.transforms[0].std #value of 0 after the scale transform
}
if self.retain_raw_images:
ret_dict['image_raw'] = image_raw
if self.retain_masks:
ret_dict['mask'] = mask
return ret_dict
def load_and_transform_image_and_mask(self, img, mask):
angle = 90
#check if gaussian phase is on
if self.gaussian_phase_transforms_epoch is not None and self.model.current_epoch >= self.gaussian_phase_transforms_epoch:
max_random_tilt = self.max_random_tilt_gaussian_phase
max_noise_intensity = self.max_noise_intensity_gaussian_phase
min_horizontal_subsampling = self.min_horizontal_subsampling_gaussian_phase
min_vertical_subsampling = self.min_vertical_subsampling_gaussian_phase
max_add_colors_to_histogram = self.max_add_colors_to_histogram_gaussian_phase
max_remove_colors_from_histogram = self.max_remove_colors_from_histogram_gaussian_phase
else:
max_random_tilt = self.max_random_tilt
max_noise_intensity = self.max_noise_intensity
min_horizontal_subsampling = self.min_horizontal_subsampling
min_vertical_subsampling = self.min_vertical_subsampling
max_add_colors_to_histogram = self.max_add_colors_to_histogram
max_remove_colors_from_histogram = self.max_remove_colors_from_histogram
if self.transform_level >= 2 and max_random_tilt is not None:
####### RANDOM TILT
angle += np.random.uniform(-max_random_tilt, max_random_tilt)
img = scipy.ndimage.rotate(img, 90 - angle, reshape=True, order=3) # HORIZONTAL POSITION
###the part of the image that is added after rotation is all black (0s)
mask = scipy.ndimage.rotate(mask, 90 - angle, reshape=True, order = 0) # HORIZONTAL POSITION
#order = 0 is the nearest neighbor interpolation, so the mask is not interpolated
############# CROP
x_from, x_to = detect_boundaries(mask, axis=0)
y_from, y_to = detect_boundaries(mask, axis=1)
#crop the image to the verical and horizontal limits.
img = img[y_from:(y_to + 1), x_from:(x_to + 1)]
mask = mask[y_from:(y_to + 1), x_from:(x_to + 1)]
img_raw = img.copy()
if self.transform_level >= 2:
########## ADDING NOISE
if max_noise_intensity > 0.0:
noise_intensity = np.random.random() * max_noise_intensity
noisy_img = add_microscope_noise(img, noise_intensity=noise_intensity)
img[mask] = noisy_img[mask]
if self.transform_level == -1:
#special case where we take at most 300 middle pixels from the image
# (vertical subsampling)
# to handle very latge images correctly
x_from, x_to = detect_boundaries(mask, axis=0)
y_from, y_to = detect_boundaries(mask, axis=1)
y_size = y_to - y_from + 1
random_size = 300 #not so random, ay?
if y_size > random_size:
random_start = y_size // 2 - random_size // 2
y_from = random_start
y_to = random_start + random_size - 1
img = img[y_from:(y_to + 1), x_from:(x_to + 1)]
mask = mask[y_from:(y_to + 1), x_from:(x_to + 1)]
# recrop the image if necessary
# -- even after only horizontal subsampling it may be necessary to recrop the image
x_from, x_to = detect_boundaries(mask, axis=0)
y_from, y_to = detect_boundaries(mask, axis=1)
img = img[y_from:(y_to + 1), x_from:(x_to + 1)]
mask = mask[y_from:(y_to + 1), x_from:(x_to + 1)]
if self.transform_level >= 1:
############## HORIZONTAL SUBSAMPLING
if min_horizontal_subsampling is not None:
x_size = x_to - x_from + 1
# add some random horizontal shift
random_size = np.random.randint(x_size * min_horizontal_subsampling / 100.0, x_size + 1)
random_start = np.random.randint(0, x_size - random_size + 1) + x_from
img = img[:, random_start:(random_start + random_size)]
mask = mask[:, random_start:(random_start + random_size)]
############ VERTICAL SUBSAMPLING
if min_vertical_subsampling is not None:
x_from, x_to = detect_boundaries(mask, axis=0)
y_from, y_to = detect_boundaries(mask, axis=1)
y_size = y_to - y_from + 1
random_size = np.random.randint(y_size * min_vertical_subsampling / 100.0, y_size + 1)
random_start = np.random.randint(0, y_size - random_size + 1) + y_from
y_from = random_start
y_to = random_start + random_size - 1
img = img[y_from:(y_to + 1), x_from:(x_to + 1)]
mask = mask[y_from:(y_to + 1), x_from:(x_to + 1)]
if min_horizontal_subsampling is not None or min_vertical_subsampling is not None:
#recrop the image if necessary
# -- even after only horizontal subsampling it may be necessary to recrop the image
x_from, x_to = detect_boundaries(mask, axis=0)
y_from, y_to = detect_boundaries(mask, axis=1)
img = img[y_from:(y_to + 1), x_from:(x_to + 1)]
mask = mask[y_from:(y_to + 1), x_from:(x_to + 1)]
######### ADD SYMMETRIC FILLING OF THE IMAGE BEYOND THE MASK
#img = add_symmetric_filling_beyond_mask(img, mask)
#This leaves holes in the image, so we will not use it
#plt.imshow(img)
#plt.show()
######### HORIZONTAL AND VERTICAL SYMMETRY.
# When superimposed, the result is 180 degree rotation
if self.transform_level >= 1 and self.hv_symmetry:
for axis in range(2):
if np.random.randint(0, 2) % 2 == 0:
img = np.flip(img, axis = axis)
mask = np.flip(mask, axis = axis)
#plt.imshow(img)
#plt.show()
if self.transform_level >= 2 and (max_add_colors_to_histogram > 0 or max_remove_colors_from_histogram > 0):
lower_bound = np.random.randint(-max_add_colors_to_histogram, max_remove_colors_from_histogram + 1)
upper_bound = np.random.randint(255 - max_remove_colors_from_histogram, 255 + max_add_colors_to_histogram + 1)
# first clip the values outstanding from the range (lower_bound -- upper_bound)
img[mask] = np.clip(img[mask], lower_bound, upper_bound)
# the range (lower_bound -- upper_bound) gets mapped to the range (0--255)
# but only in a portion of the image where mask = True
img[mask] = np.interp(img[mask], (lower_bound, upper_bound), (0, 255)).astype(np.uint8)
#### since preserve_range in skimage.transform.resize is set to False, the image
#### will be converted to float. Consult:
# https://scikit-image.org/docs/stable/api/skimage.transform.html#skimage.transform.resize
# https://scikit-image.org/docs/dev/user_guide/data_types.html
# In our case the image gets conveted to floats ranging 0-1
old_height = img.shape[0]
img = skimage.transform.resize(img, (self.image_height, self.image_width), order=3)
new_height = img.shape[0]
mask = skimage.transform.resize(mask, (self.image_height, self.image_width), order=0, preserve_range=True)
# order = 0 is the nearest neighbor interpolation, so the mask is not interpolated
scale_factor = new_height / old_height
#plt.imshow(img)
#plt.show()
#plt.imshow(mask)
#plt.show()
return img, mask, scale_factor, img_raw
class AdHocDataset2(AbstractDataset):
def __init__(self, images_masks_pxpernm: list[tuple[np.ndarray, np.ndarray, float]], *args, **kwargs):
super().__init__(*args, **kwargs)
self.data = images_masks_pxpernm
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
image, mask, px_per_nm = self.data[idx]
image, mask, scale_factor, image_raw = self.load_and_transform_image_and_mask(image, mask)
image_data = {
'image': image,
}
for transform in self.transforms:
image_data = transform(**image_data)
# transform operates on image field ONLY of image_data, and returns a dictionary with the same keys
ret_dict = {
'image': image_data['image'],
'scale': scale_factor, # the scale factor is used to calculate the true period error
# (before scale) in losses and metrics
'neutral': -self.transforms[0].mean/self.transforms[0].std #value of 0 after the scale transform
}
return ret_dict
def load_and_transform_image_and_mask(self, img, mask):
img_raw = img.copy()
if self.transform_level == -1:
#special case where we take at most 300 middle pixels from the image
# (vertical subsampling)
# to handle very latge images correctly
x_from, x_to = detect_boundaries(mask, axis=0)
y_from, y_to = detect_boundaries(mask, axis=1)
y_size = y_to - y_from + 1
max_size = 300
if y_size > max_size:
random_start = y_size // 2 - max_size // 2
y_from = random_start
y_to = random_start + max_size - 1
img = img[y_from:(y_to + 1), x_from:(x_to + 1)]
mask = mask[y_from:(y_to + 1), x_from:(x_to + 1)]
# recrop the image if necessary
# -- even after only horizontal subsampling it may be necessary to recrop the image
x_from, x_to = detect_boundaries(mask, axis=0)
y_from, y_to = detect_boundaries(mask, axis=1)
img = img[y_from:(y_to + 1), x_from:(x_to + 1)]
mask = mask[y_from:(y_to + 1), x_from:(x_to + 1)]
#### since preserve_range in skimage.transform.resize is set to False, the image
#### will be converted to float. Consult:
# https://scikit-image.org/docs/stable/api/skimage.transform.html#skimage.transform.resize
# https://scikit-image.org/docs/dev/user_guide/data_types.html
# In our case the image gets conveted to floats ranging 0-1
old_height = img.shape[0]
img = skimage.transform.resize(img, (self.image_height, self.image_width), order=3)
new_height = img.shape[0]
mask = skimage.transform.resize(mask, (self.image_height, self.image_width), order=0, preserve_range=True)
# order = 0 is the nearest neighbor interpolation, so the mask is not interpolated
scale_factor = new_height / old_height
return img, mask, scale_factor, img_raw
class AdHocDataset3(AbstractDataset):
def __init__(self, images_and_masks: list[tuple[np.ndarray, np.ndarray]], *args, **kwargs):
super().__init__(*args, **kwargs)
self.data = images_and_masks
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
image, mask = self.data[idx]
image, mask, scale_factor = self.load_and_transform_image_and_mask(image, mask)
image_data = {
'image': image,
}
for transform in self.transforms:
image_data = transform(**image_data)
# transform operates on image field ONLY of image_data, and returns a dictionary with the same keys
ret_dict = {
'image': image_data['image'],
'scale': scale_factor, # the scale factor is used to calculate the true period error
# (before scale) in losses and metrics
#value of 0 after the scale transform
}
return ret_dict
def load_and_transform_image_and_mask(self, img, mask):
if self.transform_level == -1:
#special case where we take at most 300 middle pixels from the image
# (vertical subsampling)
# to handle very latge images correctly
x_from, x_to = detect_boundaries(mask, axis=0)
y_from, y_to = detect_boundaries(mask, axis=1)
y_size = y_to - y_from + 1
max_size = 300
if y_size > max_size:
random_start = y_size // 2 - max_size // 2
y_from = random_start
y_to = random_start + max_size - 1
img = img[y_from:(y_to + 1), x_from:(x_to + 1)]
mask = mask[y_from:(y_to + 1), x_from:(x_to + 1)]
# recrop the image if necessary
# -- even after only horizontal subsampling it may be necessary to recrop the image
x_from, x_to = detect_boundaries(mask, axis=0)
y_from, y_to = detect_boundaries(mask, axis=1)
img = img[y_from:(y_to + 1), x_from:(x_to + 1)]
mask = mask[y_from:(y_to + 1), x_from:(x_to + 1)]
#### since preserve_range in skimage.transform.resize is set to False, the image
#### will be converted to float. Consult:
# https://scikit-image.org/docs/stable/api/skimage.transform.html#skimage.transform.resize
# https://scikit-image.org/docs/dev/user_guide/data_types.html
# In our case the image gets conveted to floats ranging 0-1
old_height = img.shape[0]
img = skimage.transform.resize(img, (self.image_height, self.image_width), order=3)
new_height = img.shape[0]
mask = skimage.transform.resize(mask, (self.image_height, self.image_width), order=0, preserve_range=True)
# order = 0 is the nearest neighbor interpolation, so the mask is not interpolated
scale_factor = new_height / old_height
return img, mask, scale_factor |