import gradio as gr | |
from transformers import pipeline | |
classifier = pipeline("sentiment-analysis", model="kkPriyanka/cls_distilbert_model") | |
def text_classification(text): | |
result= classifier(text) | |
sentiment_label = result[0]['label'] | |
sentiment_score = result[0]['score'] | |
formatted_output = f"This sentiment is {sentiment_label} with the probability {sentiment_score*100:.2f}%" | |
return formatted_output | |
examples=["This is wonderful movie!", "The movie was really bad; I didn't like it."] | |
io = gr.Interface(fn=text_classification, | |
inputs= gr.Textbox(lines=2, label="Text", placeholder="Enter title here..."), | |
outputs=gr.Textbox(lines=2, label="Text Classification Result"), | |
title="Text Classification", | |
description="Enter a text and see the text classification result!", | |
examples=examples) | |
io.launch(inline=False, share=True) |