Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain.callbacks.manager import CallbackManager | |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
from langchain.chains import LLMChain | |
from langchain.prompts import PromptTemplate | |
from langchain_community.llms import LlamaCpp | |
from llama_cpp import Llama | |
from pinecone import Pinecone | |
from huggingface_hub import hf_hub_download | |
def load_model(): | |
# from google.colab import userdata | |
model_name_or_path = "CompendiumLabs/bge-large-en-v1.5-gguf" | |
model_basename = 'bge-large-en-v1.5-f32.gguf' | |
model_path = hf_hub_download( | |
repo_id=model_name_or_path, | |
filename=model_basename, | |
#cache_dir= '/content/models' # Directory for the model | |
) | |
model = Llama(model_path, embedding=True) | |
st.success("Loaded NLP model from Hugging Face!") # π Show a success message | |
# pc = Pinecone(api_key=api_key) | |
# index = pc.Index("law") | |
model_2_name = "TheBloke/zephyr-7B-beta-GGUF" | |
model_2base_name = "zephyr-7b-beta.Q4_K_M.gguf" | |
model_path_model = hf_hub_download( | |
repo_id=model_2_name, | |
filename=model_2base_name, | |
#cache_dir= '/content/models' # Directory for the model | |
) | |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) | |
llm = LlamaCpp( | |
model_path=model_path_model, | |
temperature=0.75, | |
max_tokens=2500, | |
top_p=1, | |
callback_manager=callback_manager, | |
verbose=True, | |
n_ctx=2048, | |
n_threads = 2# Verbose is required to pass to the callback manager | |
) | |
st.success("loaded the second NLP model from Hugging Face!") | |
# prompt_template = "<|system|>\ | |
# </s>\ | |
# <|user|>\ | |
# {prompt}</s>\ | |
# <|assistant|>" | |
# template = prompt_template | |
# prompt = PromptTemplate.from_template(template) | |
return model, llm | |
st.title("Please ask your question on Lithuanian rules for foreigners.") | |
model,llm = load_model() | |
apikey = st.secrets["apikey"] | |
pc = Pinecone(api_key=apikey) | |
index = pc.Index("law") | |
question = st.text_input("Enter your question:") | |
if question != None: | |
query = model.create_embedding(question) | |
q = query['data'][0]['embedding'] | |
response = index.query( | |
vector=q, | |
top_k=1, | |
include_metadata = True, | |
namespace = "ns1" | |
) | |
response_t = response['matches'][0]['metadata']['text'] | |
st.header("Answer:") | |
if response_t: | |
st.write(response_t) |