Spaces:
Running
Running
File size: 2,061 Bytes
aa5d6d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import io
import json
import safetensors
import torch
from safetensors.torch import serialize
from .torch_tools import get_target_dtype_ref
def read_safetensors_metadata(lora_upload: io.BytesIO) -> dict:
# This is a simple file structure, the first 8 bytes are the metadata length.
# Read (length) bytes starting from [8] to get the metadata (a json string).
lora_upload.seek(0)
metadata_length = int.from_bytes(lora_upload.read(8), byteorder='little')
lora_upload.seek(8)
metadata_raw = lora_upload.read(metadata_length)
metadata_raw = metadata_raw.decode("utf-8")
metadata_raw = metadata_raw.strip()
metadata_dict = json.loads(metadata_raw)
# Rewind the buffer to the start, we were just peeking at the metadata.
lora_upload.seek(0)
return metadata_dict.get('__metadata__', {})
def rescale_lora_alpha(lora_upload: io.BytesIO, output_dtype, target_weight: float = 1.0) -> dict:
output_dtype = get_target_dtype_ref(output_dtype)
loaded_tensors = safetensors.torch.load(lora_upload.getvalue())
initial_tensors = {}
for tensor_pair in loaded_tensors.items():
key, tensor = tensor_pair
initial_tensors[key] = tensor.to(dtype=torch.float32)
new_tensors = {}
for key, val in initial_tensors.items():
if key.endswith(".alpha"):
val *= target_weight
new_tensors[key] = val.to(dtype=output_dtype)
return new_tensors
def remove_clip_weights(lora_upload: io.BytesIO, output_dtype) -> dict:
output_dtype = get_target_dtype_ref(output_dtype)
loaded_tensors = safetensors.torch.load(lora_upload.getvalue())
initial_tensors = {}
for tensor_pair in loaded_tensors.items():
key, tensor = tensor_pair
initial_tensors[key] = tensor.to(dtype=torch.float32)
filtered_tensors = {}
for key, val in initial_tensors.items():
if key.startswith("lora_te1") or key.startswith("lora_te2"):
continue
filtered_tensors[key] = val.to(dtype=output_dtype)
return filtered_tensors
if __name__ == '__main__':
print('__main__ not allowed in modules')
|