Spaces:
Running
Running
import os | |
import queue | |
from dataclasses import dataclass | |
from typing import Annotated, Literal | |
import torch | |
from pydantic import BaseModel, Field, conint, conlist | |
from pydantic.functional_validators import SkipValidation | |
from fish_speech.conversation import Message, TextPart, VQPart | |
class ServeVQPart(BaseModel): | |
type: Literal["vq"] = "vq" | |
codes: SkipValidation[list[list[int]]] | |
class ServeTextPart(BaseModel): | |
type: Literal["text"] = "text" | |
text: str | |
class ServeAudioPart(BaseModel): | |
type: Literal["audio"] = "audio" | |
audio: bytes | |
class ASRPackRequest: | |
audio: torch.Tensor | |
result_queue: queue.Queue | |
language: str | |
class ServeASRRequest(BaseModel): | |
# The audio should be an uncompressed PCM float16 audio | |
audios: list[bytes] | |
sample_rate: int = 44100 | |
language: Literal["zh", "en", "ja", "auto"] = "auto" | |
class ServeASRTranscription(BaseModel): | |
text: str | |
duration: float | |
huge_gap: bool | |
class ServeASRSegment(BaseModel): | |
text: str | |
start: float | |
end: float | |
class ServeTimedASRResponse(BaseModel): | |
text: str | |
segments: list[ServeASRSegment] | |
duration: float | |
class ServeASRResponse(BaseModel): | |
transcriptions: list[ServeASRTranscription] | |
class ServeMessage(BaseModel): | |
role: Literal["system", "assistant", "user"] | |
parts: list[ServeVQPart | ServeTextPart] | |
def to_conversation_message(self): | |
new_message = Message(role=self.role, parts=[]) | |
if self.role == "assistant": | |
new_message.modality = "voice" | |
for part in self.parts: | |
if isinstance(part, ServeTextPart): | |
new_message.parts.append(TextPart(text=part.text)) | |
elif isinstance(part, ServeVQPart): | |
new_message.parts.append( | |
VQPart(codes=torch.tensor(part.codes, dtype=torch.int)) | |
) | |
else: | |
raise ValueError(f"Unsupported part type: {part}") | |
return new_message | |
class ServeChatRequest(BaseModel): | |
messages: Annotated[list[ServeMessage], conlist(ServeMessage, min_length=1)] | |
max_new_tokens: int = 1024 | |
top_p: float = 0.7 | |
repetition_penalty: float = 1.2 | |
temperature: float = 0.7 | |
streaming: bool = False | |
num_samples: int = 1 | |
early_stop_threshold: float = 1.0 | |
class ServeVQGANEncodeRequest(BaseModel): | |
# The audio here should be in wav, mp3, etc | |
audios: list[bytes] | |
class ServeVQGANEncodeResponse(BaseModel): | |
tokens: SkipValidation[list[list[list[int]]]] | |
class ServeVQGANDecodeRequest(BaseModel): | |
tokens: SkipValidation[list[list[list[int]]]] | |
class ServeVQGANDecodeResponse(BaseModel): | |
# The audio here should be in PCM float16 format | |
audios: list[bytes] | |
class ServeForwardMessage(BaseModel): | |
role: str | |
content: str | |
class ServeResponse(BaseModel): | |
messages: list[ServeMessage] | |
finish_reason: Literal["stop", "error"] | None = None | |
stats: dict[str, int | float | str] = {} | |
class ServeStreamDelta(BaseModel): | |
role: Literal["system", "assistant", "user"] | None = None | |
part: ServeVQPart | ServeTextPart | None = None | |
class ServeStreamResponse(BaseModel): | |
sample_id: int = 0 | |
delta: ServeStreamDelta | None = None | |
finish_reason: Literal["stop", "error"] | None = None | |
stats: dict[str, int | float | str] | None = None | |
class ServeReferenceAudio(BaseModel): | |
audio: bytes | |
text: str | |
def __repr__(self) -> str: | |
return f"ServeReferenceAudio(text={self.text!r}, audio_size={len(self.audio)})" | |
class ServeTTSRequest(BaseModel): | |
text: str | |
chunk_length: Annotated[int, conint(ge=100, le=300, strict=True)] = 200 | |
# Audio format | |
format: Literal["wav", "pcm", "mp3"] = "wav" | |
# References audios for in-context learning | |
references: list[ServeReferenceAudio] = [] | |
# Reference id | |
# For example, if you want use https://fish.audio/m/7f92f8afb8ec43bf81429cc1c9199cb1/ | |
# Just pass 7f92f8afb8ec43bf81429cc1c9199cb1 | |
reference_id: str | None = None | |
seed: int | None = None | |
use_memory_cache: Literal["on", "off"] = "off" | |
# Normalize text for en & zh, this increase stability for numbers | |
normalize: bool = True | |
# not usually used below | |
streaming: bool = False | |
max_new_tokens: int = 1024 | |
top_p: Annotated[float, Field(ge=0.1, le=1.0, strict=True)] = 0.7 | |
repetition_penalty: Annotated[float, Field(ge=0.9, le=2.0, strict=True)] = 1.2 | |
temperature: Annotated[float, Field(ge=0.1, le=1.0, strict=True)] = 0.7 | |
class Config: | |
# Allow arbitrary types for pytorch related types | |
arbitrary_types_allowed = True | |