WSSS_ResNet50 / core /datasets.py
kittendev's picture
Upload 176 files
c20a1af verified
raw
history blame
7.95 kB
import os
import cv2
import glob
import torch
import math
import imageio
import numpy as np
from PIL import Image
from core.aff_utils import *
from tools.ai.augment_utils import *
from tools.ai.torch_utils import one_hot_embedding
from tools.general.xml_utils import read_xml
from tools.general.json_utils import read_json
from tools.dataset.voc_utils import get_color_map_dic
class Iterator:
def __init__(self, loader):
self.loader = loader
self.init()
def init(self):
self.iterator = iter(self.loader)
def get(self):
try:
data = next(self.iterator)
except StopIteration:
self.init()
data = next(self.iterator)
return data
class VOC_Dataset(torch.utils.data.Dataset):
def __init__(self, root_dir, domain, with_id=False, with_tags=False, with_mask=False):
self.root_dir = root_dir
self.image_dir = self.root_dir + 'JPEGImages/'
self.xml_dir = self.root_dir + 'Annotations/'
self.mask_dir = self.root_dir + 'SegmentationClass/'
self.image_id_list = [image_id.strip() for image_id in open('./data/%s.txt'%domain).readlines()]
self.with_id = with_id
self.with_tags = with_tags
self.with_mask = with_mask
def __len__(self):
return len(self.image_id_list)
def get_image(self, image_id):
image = Image.open(self.image_dir + image_id + '.jpg').convert('RGB')
return image
def get_mask(self, image_id):
mask_path = self.mask_dir + image_id + '.png'
if os.path.isfile(mask_path):
mask = Image.open(mask_path)
else:
mask = None
return mask
def get_tags(self, image_id):
_, tags = read_xml(self.xml_dir + image_id + '.xml')
return tags
def __getitem__(self, index):
image_id = self.image_id_list[index]
data_list = [self.get_image(image_id)]
if self.with_id:
data_list.append(image_id)
if self.with_tags:
data_list.append(self.get_tags(image_id))
if self.with_mask:
data_list.append(self.get_mask(image_id))
return data_list
class VOC_Dataset_For_Classification(VOC_Dataset):
def __init__(self, root_dir, domain, transform=None):
super().__init__(root_dir, domain, with_tags=True)
self.transform = transform
data = read_json('./data/VOC_2012.json')
self.class_dic = data['class_dic']
self.classes = data['classes']
def __getitem__(self, index):
image, tags = super().__getitem__(index)
if self.transform is not None:
image = self.transform(image)
label = one_hot_embedding([self.class_dic[tag] for tag in tags], self.classes)
return image, label
class VOC_Dataset_For_Segmentation(VOC_Dataset):
def __init__(self, root_dir, domain, transform=None):
super().__init__(root_dir, domain, with_mask=True)
self.transform = transform
cmap_dic, _, class_names = get_color_map_dic()
self.colors = np.asarray([cmap_dic[class_name] for class_name in class_names])
def __getitem__(self, index):
image, mask = super().__getitem__(index)
if self.transform is not None:
input_dic = {'image':image, 'mask':mask}
output_dic = self.transform(input_dic)
image = output_dic['image']
mask = output_dic['mask']
return image, mask
class VOC_Dataset_For_Evaluation(VOC_Dataset):
def __init__(self, root_dir, domain, transform=None):
super().__init__(root_dir, domain, with_id=True, with_mask=True)
self.transform = transform
cmap_dic, _, class_names = get_color_map_dic()
self.colors = np.asarray([cmap_dic[class_name] for class_name in class_names])
def __getitem__(self, index):
image, image_id, mask = super().__getitem__(index)
if self.transform is not None:
input_dic = {'image':image, 'mask':mask}
output_dic = self.transform(input_dic)
image = output_dic['image']
mask = output_dic['mask']
return image, image_id, mask
class VOC_Dataset_For_WSSS(VOC_Dataset):
def __init__(self, root_dir, domain, pred_dir, transform=None):
super().__init__(root_dir, domain, with_id=True)
self.pred_dir = pred_dir
self.transform = transform
cmap_dic, _, class_names = get_color_map_dic()
self.colors = np.asarray([cmap_dic[class_name] for class_name in class_names])
def __getitem__(self, index):
image, image_id = super().__getitem__(index)
mask = Image.open(self.pred_dir + image_id + '.png')
if self.transform is not None:
input_dic = {'image':image, 'mask':mask}
output_dic = self.transform(input_dic)
image = output_dic['image']
mask = output_dic['mask']
return image, mask
class VOC_Dataset_For_Testing_CAM(VOC_Dataset):
def __init__(self, root_dir, domain, transform=None):
super().__init__(root_dir, domain, with_tags=True, with_mask=True)
self.transform = transform
cmap_dic, _, class_names = get_color_map_dic()
self.colors = np.asarray([cmap_dic[class_name] for class_name in class_names])
data = read_json('./data/VOC_2012.json')
self.class_dic = data['class_dic']
self.classes = data['classes']
def __getitem__(self, index):
image, tags, mask = super().__getitem__(index)
if self.transform is not None:
input_dic = {'image':image, 'mask':mask}
output_dic = self.transform(input_dic)
image = output_dic['image']
mask = output_dic['mask']
label = one_hot_embedding([self.class_dic[tag] for tag in tags], self.classes)
return image, label, mask
class VOC_Dataset_For_Making_CAM(VOC_Dataset):
def __init__(self, root_dir, domain):
super().__init__(root_dir, domain, with_id=True, with_tags=True, with_mask=True)
cmap_dic, _, class_names = get_color_map_dic()
self.colors = np.asarray([cmap_dic[class_name] for class_name in class_names])
data = read_json('./data/VOC_2012.json')
self.class_names = np.asarray(class_names[1:21])
self.class_dic = data['class_dic']
self.classes = data['classes']
def __getitem__(self, index):
image, image_id, tags, mask = super().__getitem__(index)
label = one_hot_embedding([self.class_dic[tag] for tag in tags], self.classes)
return image, image_id, label, mask
class VOC_Dataset_For_Affinity(VOC_Dataset):
def __init__(self, root_dir, domain, path_index, label_dir, transform=None):
super().__init__(root_dir, domain, with_id=True)
data = read_json('./data/VOC_2012.json')
self.class_dic = data['class_dic']
self.classes = data['classes']
self.transform = transform
self.label_dir = label_dir
self.path_index = path_index
self.extract_aff_lab_func = GetAffinityLabelFromIndices(self.path_index.src_indices, self.path_index.dst_indices)
def __getitem__(self, idx):
image, image_id = super().__getitem__(idx)
label = imageio.imread(self.label_dir + image_id + '.png')
label = Image.fromarray(label)
output_dic = self.transform({'image':image, 'mask':label})
image, label = output_dic['image'], output_dic['mask']
return image, self.extract_aff_lab_func(label)