File size: 7,949 Bytes
c20a1af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import cv2
import glob
import torch

import math
import imageio
import numpy as np

from PIL import Image

from core.aff_utils import *

from tools.ai.augment_utils import *
from tools.ai.torch_utils import one_hot_embedding

from tools.general.xml_utils import read_xml
from tools.general.json_utils import read_json
from tools.dataset.voc_utils import get_color_map_dic

class Iterator:
    def __init__(self, loader):
        self.loader = loader
        self.init()

    def init(self):
        self.iterator = iter(self.loader)
    
    def get(self):
        try:
            data = next(self.iterator)
        except StopIteration:
            self.init()
            data = next(self.iterator)
        
        return data

class VOC_Dataset(torch.utils.data.Dataset):
    def __init__(self, root_dir, domain, with_id=False, with_tags=False, with_mask=False):
        self.root_dir = root_dir

        self.image_dir = self.root_dir + 'JPEGImages/'
        self.xml_dir = self.root_dir + 'Annotations/'
        self.mask_dir = self.root_dir + 'SegmentationClass/'
        
        self.image_id_list = [image_id.strip() for image_id in open('./data/%s.txt'%domain).readlines()]
        
        self.with_id = with_id
        self.with_tags = with_tags
        self.with_mask = with_mask

    def __len__(self):
        return len(self.image_id_list)

    def get_image(self, image_id):
        image = Image.open(self.image_dir + image_id + '.jpg').convert('RGB')
        return image

    def get_mask(self, image_id):
        mask_path = self.mask_dir + image_id + '.png'
        if os.path.isfile(mask_path):
            mask = Image.open(mask_path)
        else:
            mask = None
        return mask

    def get_tags(self, image_id):
        _, tags = read_xml(self.xml_dir + image_id + '.xml')
        return tags
    
    def __getitem__(self, index):
        image_id = self.image_id_list[index]

        data_list = [self.get_image(image_id)]

        if self.with_id:
            data_list.append(image_id)

        if self.with_tags:
            data_list.append(self.get_tags(image_id))

        if self.with_mask:
            data_list.append(self.get_mask(image_id))
        
        return data_list

class VOC_Dataset_For_Classification(VOC_Dataset):
    def __init__(self, root_dir, domain, transform=None):
        super().__init__(root_dir, domain, with_tags=True)
        self.transform = transform

        data = read_json('./data/VOC_2012.json')

        self.class_dic = data['class_dic']
        self.classes = data['classes']

    def __getitem__(self, index):
        image, tags = super().__getitem__(index)

        if self.transform is not None:
            image = self.transform(image)

        label = one_hot_embedding([self.class_dic[tag] for tag in tags], self.classes)
        return image, label

class VOC_Dataset_For_Segmentation(VOC_Dataset):
    def __init__(self, root_dir, domain, transform=None):
        super().__init__(root_dir, domain, with_mask=True)
        self.transform = transform

        cmap_dic, _, class_names = get_color_map_dic()
        self.colors = np.asarray([cmap_dic[class_name] for class_name in class_names])
    
    def __getitem__(self, index):
        image, mask = super().__getitem__(index)

        if self.transform is not None:
            input_dic = {'image':image, 'mask':mask}
            output_dic = self.transform(input_dic)

            image = output_dic['image']
            mask = output_dic['mask']
        
        return image, mask

class VOC_Dataset_For_Evaluation(VOC_Dataset):
    def __init__(self, root_dir, domain, transform=None):
        super().__init__(root_dir, domain, with_id=True, with_mask=True)
        self.transform = transform

        cmap_dic, _, class_names = get_color_map_dic()
        self.colors = np.asarray([cmap_dic[class_name] for class_name in class_names])

    def __getitem__(self, index):
        image, image_id, mask = super().__getitem__(index)

        if self.transform is not None:
            input_dic = {'image':image, 'mask':mask}
            output_dic = self.transform(input_dic)

            image = output_dic['image']
            mask = output_dic['mask']
        
        return image, image_id, mask

class VOC_Dataset_For_WSSS(VOC_Dataset):
    def __init__(self, root_dir, domain, pred_dir, transform=None):
        super().__init__(root_dir, domain, with_id=True)
        self.pred_dir = pred_dir
        self.transform = transform

        cmap_dic, _, class_names = get_color_map_dic()
        self.colors = np.asarray([cmap_dic[class_name] for class_name in class_names])
    
    def __getitem__(self, index):
        image, image_id = super().__getitem__(index)
        mask = Image.open(self.pred_dir + image_id + '.png')
        
        if self.transform is not None:
            input_dic = {'image':image, 'mask':mask}
            output_dic = self.transform(input_dic)

            image = output_dic['image']
            mask = output_dic['mask']
        
        return image, mask

class VOC_Dataset_For_Testing_CAM(VOC_Dataset):
    def __init__(self, root_dir, domain, transform=None):
        super().__init__(root_dir, domain, with_tags=True, with_mask=True)
        self.transform = transform

        cmap_dic, _, class_names = get_color_map_dic()
        self.colors = np.asarray([cmap_dic[class_name] for class_name in class_names])
        
        data = read_json('./data/VOC_2012.json')

        self.class_dic = data['class_dic']
        self.classes = data['classes']

    def __getitem__(self, index):
        image, tags, mask = super().__getitem__(index)

        if self.transform is not None:
            input_dic = {'image':image, 'mask':mask}
            output_dic = self.transform(input_dic)

            image = output_dic['image']
            mask = output_dic['mask']
        
        label = one_hot_embedding([self.class_dic[tag] for tag in tags], self.classes)
        return image, label, mask

class VOC_Dataset_For_Making_CAM(VOC_Dataset):
    def __init__(self, root_dir, domain):
        super().__init__(root_dir, domain, with_id=True, with_tags=True, with_mask=True)

        cmap_dic, _, class_names = get_color_map_dic()
        self.colors = np.asarray([cmap_dic[class_name] for class_name in class_names])
        
        data = read_json('./data/VOC_2012.json')

        self.class_names = np.asarray(class_names[1:21])
        self.class_dic = data['class_dic']
        self.classes = data['classes']

    def __getitem__(self, index):
        image, image_id, tags, mask = super().__getitem__(index)

        label = one_hot_embedding([self.class_dic[tag] for tag in tags], self.classes)
        return image, image_id, label, mask

class VOC_Dataset_For_Affinity(VOC_Dataset):
    def __init__(self, root_dir, domain, path_index, label_dir, transform=None):
        super().__init__(root_dir, domain, with_id=True)

        data = read_json('./data/VOC_2012.json')

        self.class_dic = data['class_dic']
        self.classes = data['classes']

        self.transform = transform

        self.label_dir = label_dir
        self.path_index = path_index

        self.extract_aff_lab_func = GetAffinityLabelFromIndices(self.path_index.src_indices, self.path_index.dst_indices)

    def __getitem__(self, idx):
        image, image_id = super().__getitem__(idx)

        label = imageio.imread(self.label_dir + image_id + '.png')
        label = Image.fromarray(label)
        
        output_dic = self.transform({'image':image, 'mask':label})
        image, label = output_dic['image'], output_dic['mask']
        
        return image, self.extract_aff_lab_func(label)