Spaces:
Sleeping
Sleeping
File size: 7,599 Bytes
05672b0 845a60a 4619785 845a60a 05672b0 845a60a 5ccaec8 c487e2d 41dcf75 05672b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
# Copyright (C) 2020 * Ltd. All rights reserved.
# author : Sanghyeon Jo <[email protected]>
import gradio as gr
import os
import sys
import copy
import shutil
import random
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from core.puzzle_utils import *
from core.networks import *
from core.datasets import *
from tools.general.io_utils import *
from tools.general.time_utils import *
from tools.general.json_utils import *
from tools.ai.log_utils import *
from tools.ai.demo_utils import *
from tools.ai.optim_utils import *
from tools.ai.torch_utils import *
from tools.ai.evaluate_utils import *
from tools.ai.augment_utils import *
from tools.ai.randaugment import *
import PIL.Image
parser = argparse.ArgumentParser()
###############################################################################
# Dataset
###############################################################################
parser.add_argument('--seed', default=2606, type=int)
parser.add_argument('--num_workers', default=4, type=int)
###############################################################################
# Network
###############################################################################
parser.add_argument('--architecture', default='DeepLabv3+', type=str)
parser.add_argument('--backbone', default='resnet50', type=str)
parser.add_argument('--mode', default='fix', type=str)
parser.add_argument('--use_gn', default=True, type=str2bool)
###############################################################################
# Inference parameters
###############################################################################
parser.add_argument('--tag', default='', type=str)
parser.add_argument('--domain', default='val', type=str)
parser.add_argument('--scales', default='0.5,1.0,1.5,2.0', type=str)
parser.add_argument('--iteration', default=10, type=int)
class_names = [
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor"
]
cmap_dic = {
"background": [
0,
0,
0
],
"aeroplane": [
128,
0,
0
],
"bicycle": [
0,
128,
0
],
"bird": [
128,
128,
0
],
"boat": [
0,
0,
128
],
"bottle": [
128,
0,
128
],
"bus": [
0,
128,
128
],
"car": [
128,
128,
128
],
"cat": [
64,
0,
0
],
"chair": [
192,
0,
0
],
"cow": [
64,
128,
0
],
"diningtable": [
192,
128,
0
],
"dog": [
64,
0,
128
],
"horse": [
192,
0,
128
],
"motorbike": [
64,
128,
128
],
"person": [
192,
128,
128
],
"pottedplant": [
0,
64,
0
],
"sheep": [
128,
64,
0
],
"sofa": [
0,
192,
0
],
"train": [
128,
192,
0
],
"tvmonitor": [
0,
64,
128
]
}
colors = np.asarray([cmap_dic[class_name] for class_name in class_names])
if __name__ == '__main__':
###################################################################################
# Arguments
###################################################################################
args = parser.parse_args()
model_dir = create_directory('./experiments/models/')
model_path = model_dir + f'DeepLabv3+@ResNet-50@[email protected]'
if 'train' in args.domain:
args.tag += '@train'
else:
args.tag += '@' + args.domain
args.tag += '@scale=%s' % args.scales
args.tag += '@iteration=%d' % args.iteration
set_seed(args.seed)
log_func = lambda string='': print(string)
###################################################################################
# Transform, Dataset, DataLoader
###################################################################################
imagenet_mean = [0.485, 0.456, 0.406]
imagenet_std = [0.229, 0.224, 0.225]
normalize_fn = Normalize(imagenet_mean, imagenet_std)
# for mIoU
meta_dic = read_json('./data/VOC_2012.json')
###################################################################################
# Network
###################################################################################
if args.architecture == 'DeepLabv3+':
model = DeepLabv3_Plus(args.backbone, num_classes=meta_dic['classes'] + 1, mode=args.mode,
use_group_norm=args.use_gn)
elif args.architecture == 'Seg_Model':
model = Seg_Model(args.backbone, num_classes=meta_dic['classes'] + 1)
elif args.architecture == 'CSeg_Model':
model = CSeg_Model(args.backbone, num_classes=meta_dic['classes'] + 1)
model.eval()
log_func('[i] Architecture is {}'.format(args.architecture))
log_func('[i] Total Params: %.2fM' % (calculate_parameters(model)))
log_func()
load_model(model, model_path, parallel=False)
#################################################################################################
# Evaluation
#################################################################################################
eval_timer = Timer()
scales = [float(scale) for scale in args.scales.split(',')]
model.eval()
eval_timer.tik()
def inference(images, image_size):
logits = model(images)
logits = resize_for_tensors(logits, image_size)
logits = logits[0] + logits[1].flip(-1)
logits = get_numpy_from_tensor(logits).transpose((1, 2, 0))
return logits
def predict_image(ori_image):
ori_image = PIL.Image.fromarray(ori_image)
with torch.no_grad():
ori_w, ori_h = ori_image.size
cams_list = []
for scale in scales:
image = copy.deepcopy(ori_image)
image = image.resize((round(ori_w * scale), round(ori_h * scale)), resample=PIL.Image.BICUBIC)
image = normalize_fn(image)
image = image.transpose((2, 0, 1))
image = torch.from_numpy(image)
flipped_image = image.flip(-1)
images = torch.stack([image, flipped_image])
cams = inference(images, (ori_h, ori_w))
cams_list.append(cams)
preds = np.sum(cams_list, axis=0)
preds = F.softmax(torch.from_numpy(preds), dim=-1).numpy()
if args.iteration > 0:
preds = crf_inference(np.asarray(ori_image), preds.transpose((2, 0, 1)), t=args.iteration)
pred_mask = np.argmax(preds, axis=0)
else:
pred_mask = np.argmax(preds, axis=-1)
pred_mask = decode_from_colormap(pred_mask, colors)[..., ::-1]
return Image.fromarray(pred_mask.astype(np.uint8)).convert("RGB")
demo = gr.Interface(
fn=predict_image,
inputs="image",
outputs="image"
)
demo.launch()
|