File size: 12,928 Bytes
650351e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ecd09f
42c5722
 
 
 
 
 
650351e
42c5722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
650351e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# Copyright (C) 2021 * Ltd. All rights reserved.
# author : Sanghyeon Jo <[email protected]>

import math

import torch
import torch.nn as nn
import torch.nn.functional as F

from torchvision import models
import torch.utils.model_zoo as model_zoo

from .arch_resnet import resnet
from .arch_resnest import resnest
from .abc_modules import ABC_Model

from .deeplab_utils import ASPP, Decoder
from .aff_utils import PathIndex
from .puzzle_utils import tile_features, merge_features

from tools.ai.torch_utils import resize_for_tensors

#######################################################################
# Normalization
#######################################################################
from .sync_batchnorm.batchnorm import SynchronizedBatchNorm2d

class FixedBatchNorm(nn.BatchNorm2d):
    def forward(self, x):
        return F.batch_norm(x, self.running_mean, self.running_var, self.weight, self.bias, training=False, eps=self.eps)

def group_norm(features):
    return nn.GroupNorm(4, features)
#######################################################################

class Backbone(nn.Module, ABC_Model):
    def __init__(self, model_name, num_classes=20, mode='fix', segmentation=False):
        super().__init__()
        
        self.mode = mode
        
        if self.mode == 'fix':
            self.norm_fn = FixedBatchNorm
        else:
            self.norm_fn = nn.BatchNorm2d
        
        if 'resnet' in model_name:
            self.model = resnet.ResNet(resnet.Bottleneck, resnet.layers_dic[model_name], strides=(2, 2, 2, 1),
                                       batch_norm_fn=self.norm_fn)
        
            state_dict = model_zoo.load_url(resnet.urls_dic[model_name])
            state_dict.pop('fc.weight')
            state_dict.pop('fc.bias')
        
            self.model.load_state_dict(state_dict)
        else:
            if segmentation:
                dilation, dilated = 4, True
            else:
                dilation, dilated = 2, False
        
            self.model = eval("resnest." + model_name)(pretrained=True, dilated=dilated, dilation=dilation,
                                                       norm_layer=self.norm_fn)
        
            del self.model.avgpool
            del self.model.fc
        
        self.stage1 = nn.Sequential(self.model.conv1,
                                    self.model.bn1,
                                    self.model.relu,
                                    self.model.maxpool)
        self.stage2 = nn.Sequential(self.model.layer1)
        self.stage3 = nn.Sequential(self.model.layer2)
        self.stage4 = nn.Sequential(self.model.layer3)
        self.stage5 = nn.Sequential(self.model.layer4)

class Classifier(Backbone):
    def __init__(self, model_name, state_path, num_classes=20, mode='fix'):
        super().__init__(model_name, state_path, num_classes, mode)
        
        self.classifier = nn.Conv2d(2048, num_classes, 1, bias=False)
        self.num_classes = num_classes

        self.initialize([self.classifier])
    
    def forward(self, x, with_cam=False):
        x = self.stage1(x)
        x = self.stage2(x)
        x = self.stage3(x)
        x = self.stage4(x)
        x = self.stage5(x)
        
        if with_cam:
            features = self.classifier(x)
            logits = self.global_average_pooling_2d(features)
            return logits, features
        else:
            x = self.global_average_pooling_2d(x, keepdims=True) 
            logits = self.classifier(x).view(-1, self.num_classes)
            return logits

class Classifier_For_Positive_Pooling(Backbone):
    def __init__(self, model_name, num_classes=20, mode='fix'):
        super().__init__(model_name, num_classes, mode)
        
        self.classifier = nn.Conv2d(2048, num_classes, 1, bias=False)
        self.num_classes = num_classes
        
        self.initialize([self.classifier])
    
    def forward(self, x, with_cam=False):
        x = self.stage1(x)
        x = self.stage2(x)
        x = self.stage3(x)
        x = self.stage4(x)
        x = self.stage5(x)
        
        if with_cam:
            features = self.classifier(x)
            logits = self.global_average_pooling_2d(features)
            return logits, features
        else:
            x = self.global_average_pooling_2d(x, keepdims=True) 
            logits = self.classifier(x).view(-1, self.num_classes)
            return logits

class Classifier_For_Puzzle(Classifier):
    def __init__(self, model_name, num_classes=20, mode='fix'):
        super().__init__(model_name, num_classes, mode)
        
    def forward(self, x, num_pieces=1, level=-1):
        batch_size = x.size()[0]
        
        output_dic = {}
        layers = [self.stage1, self.stage2, self.stage3, self.stage4, self.stage5, self.classifier]

        for l, layer in enumerate(layers):
            l += 1
            if level == l:
                x = tile_features(x, num_pieces)

            x = layer(x)
            output_dic['stage%d'%l] = x
        
        output_dic['logits'] = self.global_average_pooling_2d(output_dic['stage6'])

        for l in range(len(layers)):
            l += 1
            if l >= level:
                output_dic['stage%d'%l] = merge_features(output_dic['stage%d'%l], num_pieces, batch_size)

        if level is not None:
            output_dic['merged_logits'] = self.global_average_pooling_2d(output_dic['stage6'])

        return output_dic
        
class AffinityNet(Backbone):
    def __init__(self, model_name, path_index=None):
        super().__init__(model_name, None, 'fix')

        if '50' in model_name:
            fc_edge1_features = 64
        else:
            fc_edge1_features = 128

        self.fc_edge1 = nn.Sequential(
            nn.Conv2d(fc_edge1_features, 32, 1, bias=False),
            nn.GroupNorm(4, 32),
            nn.ReLU(inplace=True),
        )
        self.fc_edge2 = nn.Sequential(
            nn.Conv2d(256, 32, 1, bias=False),
            nn.GroupNorm(4, 32),
            nn.ReLU(inplace=True),
        )
        self.fc_edge3 = nn.Sequential(
            nn.Conv2d(512, 32, 1, bias=False),
            nn.GroupNorm(4, 32),
            nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
            nn.ReLU(inplace=True),
        )
        self.fc_edge4 = nn.Sequential(
            nn.Conv2d(1024, 32, 1, bias=False),
            nn.GroupNorm(4, 32),
            nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False),
            nn.ReLU(inplace=True),
        )
        self.fc_edge5 = nn.Sequential(
            nn.Conv2d(2048, 32, 1, bias=False),
            nn.GroupNorm(4, 32),
            nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False),
            nn.ReLU(inplace=True),
        )
        self.fc_edge6 = nn.Conv2d(160, 1, 1, bias=True)

        self.backbone = nn.ModuleList([self.stage1, self.stage2, self.stage3, self.stage4, self.stage5])
        self.edge_layers = nn.ModuleList([self.fc_edge1, self.fc_edge2, self.fc_edge3, self.fc_edge4, self.fc_edge5, self.fc_edge6])

        if path_index is not None:
            self.path_index = path_index
            self.n_path_lengths = len(self.path_index.path_indices)
            for i, pi in enumerate(self.path_index.path_indices):
                self.register_buffer("path_indices_" + str(i), torch.from_numpy(pi))
    
    def train(self, mode=True):
        super().train(mode)
        self.backbone.eval()

    def forward(self, x, with_affinity=False):
        x1 = self.stage1(x).detach()
        x2 = self.stage2(x1).detach()
        x3 = self.stage3(x2).detach()
        x4 = self.stage4(x3).detach()
        x5 = self.stage5(x4).detach()
        
        edge1 = self.fc_edge1(x1)
        edge2 = self.fc_edge2(x2)
        edge3 = self.fc_edge3(x3)[..., :edge2.size(2), :edge2.size(3)]
        edge4 = self.fc_edge4(x4)[..., :edge2.size(2), :edge2.size(3)]
        edge5 = self.fc_edge5(x5)[..., :edge2.size(2), :edge2.size(3)]

        edge = self.fc_edge6(torch.cat([edge1, edge2, edge3, edge4, edge5], dim=1))

        if with_affinity:
            return edge, self.to_affinity(torch.sigmoid(edge))
        else:
            return edge

    def get_edge(self, x, image_size=512, stride=4):
        feat_size = (x.size(2)-1)//stride+1, (x.size(3)-1)//stride+1

        x = F.pad(x, [0, image_size-x.size(3), 0, image_size-x.size(2)])
        edge_out = self.forward(x)
        edge_out = edge_out[..., :feat_size[0], :feat_size[1]]
        edge_out = torch.sigmoid(edge_out[0]/2 + edge_out[1].flip(-1)/2)
        
        return edge_out
    
    """
    aff = self.to_affinity(torch.sigmoid(edge_out))
    pos_aff_loss = (-1) * torch.log(aff + 1e-5)
    neg_aff_loss = (-1) * torch.log(1. + 1e-5 - aff)
    """
    def to_affinity(self, edge):
        aff_list = []
        edge = edge.view(edge.size(0), -1)
        
        for i in range(self.n_path_lengths):
            ind = self._buffers["path_indices_" + str(i)]
            ind_flat = ind.view(-1)
            dist = torch.index_select(edge, dim=-1, index=ind_flat)
            dist = dist.view(dist.size(0), ind.size(0), ind.size(1), ind.size(2))
            aff = torch.squeeze(1 - F.max_pool2d(dist, (dist.size(2), 1)), dim=2)
            aff_list.append(aff)
        aff_cat = torch.cat(aff_list, dim=1)
        return aff_cat

class DeepLabv3_Plus(Backbone):
    def __init__(self, model_name, num_classes=21, mode='fix', use_group_norm=False):
        super().__init__(model_name, num_classes, mode, segmentation=False)
        
        if use_group_norm:
            norm_fn_for_extra_modules = group_norm
        else:
            norm_fn_for_extra_modules = self.norm_fn
        
        self.aspp = ASPP(output_stride=16, norm_fn=norm_fn_for_extra_modules)
        self.decoder = Decoder(num_classes, 256, norm_fn_for_extra_modules)
        
    def forward(self, x, with_cam=False):
        inputs = x

        x = self.stage1(x)
        x = self.stage2(x)
        x_low_level = x
        
        x = self.stage3(x)
        x = self.stage4(x)
        x = self.stage5(x)
        
        x = self.aspp(x)
        x = self.decoder(x, x_low_level)
        x = resize_for_tensors(x, inputs.size()[2:], align_corners=True)

        return x

class Seg_Model(Backbone):
    def __init__(self, model_name, num_classes=21):
        super().__init__(model_name, num_classes, mode='fix', segmentation=False)
        
        self.classifier = nn.Conv2d(2048, num_classes, 1, bias=False)
    
    def forward(self, inputs):
        x = self.stage1(inputs)
        x = self.stage2(x)
        x = self.stage3(x)
        x = self.stage4(x)
        x = self.stage5(x)
        
        logits = self.classifier(x)
        # logits = resize_for_tensors(logits, inputs.size()[2:], align_corners=False)
        
        return logits

class CSeg_Model(Backbone):
    def __init__(self, model_name, num_classes=21):
        super().__init__(model_name, num_classes, 'fix')

        if '50' in model_name:
            fc_edge1_features = 64
        else:
            fc_edge1_features = 128

        self.fc_edge1 = nn.Sequential(
            nn.Conv2d(fc_edge1_features, 32, 1, bias=False),
            nn.GroupNorm(4, 32),
            nn.ReLU(inplace=True),
        )
        self.fc_edge2 = nn.Sequential(
            nn.Conv2d(256, 32, 1, bias=False),
            nn.GroupNorm(4, 32),
            nn.ReLU(inplace=True),
        )
        self.fc_edge3 = nn.Sequential(
            nn.Conv2d(512, 32, 1, bias=False),
            nn.GroupNorm(4, 32),
            nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
            nn.ReLU(inplace=True),
        )
        self.fc_edge4 = nn.Sequential(
            nn.Conv2d(1024, 32, 1, bias=False),
            nn.GroupNorm(4, 32),
            nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False),
            nn.ReLU(inplace=True),
        )
        self.fc_edge5 = nn.Sequential(
            nn.Conv2d(2048, 32, 1, bias=False),
            nn.GroupNorm(4, 32),
            nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False),
            nn.ReLU(inplace=True),
        )
        self.fc_edge6 = nn.Conv2d(160, num_classes, 1, bias=True)

    def forward(self, x):
        x1 = self.stage1(x)
        x2 = self.stage2(x1)
        x3 = self.stage3(x2)
        x4 = self.stage4(x3)
        x5 = self.stage5(x4)
        
        edge1 = self.fc_edge1(x1)
        edge2 = self.fc_edge2(x2)
        edge3 = self.fc_edge3(x3)[..., :edge2.size(2), :edge2.size(3)]
        edge4 = self.fc_edge4(x4)[..., :edge2.size(2), :edge2.size(3)]
        edge5 = self.fc_edge5(x5)[..., :edge2.size(2), :edge2.size(3)]

        logits = self.fc_edge6(torch.cat([edge1, edge2, edge3, edge4, edge5], dim=1))
        # logits = resize_for_tensors(logits, x.size()[2:], align_corners=True)
        
        return logits