File size: 13,549 Bytes
c20a1af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## Email: [email protected]
## Copyright (c) 2020
##
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
"""ResNet variants"""
import math
import torch
import torch.nn as nn

from .splat import SplAtConv2d

__all__ = ['ResNet', 'Bottleneck']

class DropBlock2D(object):
    def __init__(self, *args, **kwargs):
        raise NotImplementedError

class GlobalAvgPool2d(nn.Module):
    def __init__(self):
        """Global average pooling over the input's spatial dimensions"""
        super(GlobalAvgPool2d, self).__init__()

    def forward(self, inputs):
        return nn.functional.adaptive_avg_pool2d(inputs, 1).view(inputs.size(0), -1)

class Bottleneck(nn.Module):
    """ResNet Bottleneck

    """
    # pylint: disable=unused-argument
    expansion = 4
    def __init__(self, inplanes, planes, stride=1, downsample=None,

                 radix=1, cardinality=1, bottleneck_width=64,

                 avd=False, avd_first=False, dilation=1, is_first=False,

                 rectified_conv=False, rectify_avg=False,

                 norm_layer=None, dropblock_prob=0.0, last_gamma=False):
        super(Bottleneck, self).__init__()
        group_width = int(planes * (bottleneck_width / 64.)) * cardinality
        self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False)
        self.bn1 = norm_layer(group_width)
        self.dropblock_prob = dropblock_prob
        self.radix = radix
        self.avd = avd and (stride > 1 or is_first)
        self.avd_first = avd_first

        if self.avd:
            self.avd_layer = nn.AvgPool2d(3, stride, padding=1)
            stride = 1

        if dropblock_prob > 0.0:
            self.dropblock1 = DropBlock2D(dropblock_prob, 3)
            if radix == 1:
                self.dropblock2 = DropBlock2D(dropblock_prob, 3)
            self.dropblock3 = DropBlock2D(dropblock_prob, 3)

        if radix >= 1:
            self.conv2 = SplAtConv2d(
                group_width, group_width, kernel_size=3,
                stride=stride, padding=dilation,
                dilation=dilation, groups=cardinality, bias=False,
                radix=radix, rectify=rectified_conv,
                rectify_avg=rectify_avg,
                norm_layer=norm_layer,
                dropblock_prob=dropblock_prob)
        elif rectified_conv:
            from rfconv import RFConv2d
            self.conv2 = RFConv2d(
                group_width, group_width, kernel_size=3, stride=stride,
                padding=dilation, dilation=dilation,
                groups=cardinality, bias=False,
                average_mode=rectify_avg)
            self.bn2 = norm_layer(group_width)
        else:
            self.conv2 = nn.Conv2d(
                group_width, group_width, kernel_size=3, stride=stride,
                padding=dilation, dilation=dilation,
                groups=cardinality, bias=False)
            self.bn2 = norm_layer(group_width)

        self.conv3 = nn.Conv2d(
            group_width, planes * 4, kernel_size=1, bias=False)
        self.bn3 = norm_layer(planes*4)

        if last_gamma:
            from torch.nn.init import zeros_
            zeros_(self.bn3.weight)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.dilation = dilation
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        if self.dropblock_prob > 0.0:
            out = self.dropblock1(out)
        out = self.relu(out)

        if self.avd and self.avd_first:
            out = self.avd_layer(out)

        out = self.conv2(out)
        if self.radix == 0:
            out = self.bn2(out)
            if self.dropblock_prob > 0.0:
                out = self.dropblock2(out)
            out = self.relu(out)

        if self.avd and not self.avd_first:
            out = self.avd_layer(out)

        out = self.conv3(out)
        out = self.bn3(out)
        if self.dropblock_prob > 0.0:
            out = self.dropblock3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

class ResNet(nn.Module):
    """ResNet Variants



    Parameters

    ----------

    block : Block

        Class for the residual block. Options are BasicBlockV1, BottleneckV1.

    layers : list of int

        Numbers of layers in each block

    classes : int, default 1000

        Number of classification classes.

    dilated : bool, default False

        Applying dilation strategy to pretrained ResNet yielding a stride-8 model,

        typically used in Semantic Segmentation.

    norm_layer : object

        Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`;

        for Synchronized Cross-GPU BachNormalization).



    Reference:



        - He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.



        - Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions."

    """
    # pylint: disable=unused-variable
    def __init__(self, block, layers, radix=1, groups=1, bottleneck_width=64,

                 num_classes=1000, dilated=False, dilation=1,

                 deep_stem=False, stem_width=64, avg_down=False,

                 rectified_conv=False, rectify_avg=False,

                 avd=False, avd_first=False,

                 final_drop=0.0, dropblock_prob=0,

                 last_gamma=False, norm_layer=nn.BatchNorm2d):
        self.cardinality = groups
        self.bottleneck_width = bottleneck_width
        # ResNet-D params
        self.inplanes = stem_width*2 if deep_stem else 64
        self.avg_down = avg_down
        self.last_gamma = last_gamma
        # ResNeSt params
        self.radix = radix
        self.avd = avd
        self.avd_first = avd_first

        super(ResNet, self).__init__()
        self.rectified_conv = rectified_conv
        self.rectify_avg = rectify_avg
        if rectified_conv:
            from rfconv import RFConv2d
            conv_layer = RFConv2d
        else:
            conv_layer = nn.Conv2d
        conv_kwargs = {'average_mode': rectify_avg} if rectified_conv else {}
        if deep_stem:
            self.conv1 = nn.Sequential(
                conv_layer(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False, **conv_kwargs),
                norm_layer(stem_width),
                nn.ReLU(inplace=True),
                conv_layer(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs),
                norm_layer(stem_width),
                nn.ReLU(inplace=True),
                conv_layer(stem_width, stem_width*2, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs),
            )
        else:
            self.conv1 = conv_layer(3, 64, kernel_size=7, stride=2, padding=3,
                                   bias=False, **conv_kwargs)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], norm_layer=norm_layer, is_first=False)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer)
        if dilated or dilation == 4:
            self.layer3 = self._make_layer(block, 256, layers[2], stride=1,
                                           dilation=2, norm_layer=norm_layer,
                                           dropblock_prob=dropblock_prob)
            self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
                                           dilation=4, norm_layer=norm_layer,
                                           dropblock_prob=dropblock_prob)
        elif dilation==2:
            self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
                                           dilation=1, norm_layer=norm_layer,
                                           dropblock_prob=dropblock_prob)
            self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
                                           dilation=2, norm_layer=norm_layer,
                                           dropblock_prob=dropblock_prob)
        else:
            self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
                                           norm_layer=norm_layer,
                                           dropblock_prob=dropblock_prob)
            self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
                                           norm_layer=norm_layer,
                                           dropblock_prob=dropblock_prob)

        self.avgpool = GlobalAvgPool2d()
        self.drop = nn.Dropout(final_drop) if final_drop > 0.0 else None
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, norm_layer):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1, dilation=1, norm_layer=None,

                    dropblock_prob=0.0, is_first=True):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            down_layers = []
            if self.avg_down:
                if dilation == 1:
                    down_layers.append(nn.AvgPool2d(kernel_size=stride, stride=stride,
                                                    ceil_mode=True, count_include_pad=False))
                else:
                    down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1,
                                                    ceil_mode=True, count_include_pad=False))
                down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion,
                                             kernel_size=1, stride=1, bias=False))
            else:
                down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion,
                                             kernel_size=1, stride=stride, bias=False))
            down_layers.append(norm_layer(planes * block.expansion))
            downsample = nn.Sequential(*down_layers)
        
        layers = []
        if dilation == 1 or dilation == 2:
            layers.append(block(self.inplanes, planes, stride, downsample=downsample,
                                radix=self.radix, cardinality=self.cardinality,
                                bottleneck_width=self.bottleneck_width,
                                avd=self.avd, avd_first=self.avd_first,
                                dilation=1, is_first=is_first, rectified_conv=self.rectified_conv,
                                rectify_avg=self.rectify_avg,
                                norm_layer=norm_layer, dropblock_prob=dropblock_prob,
                                last_gamma=self.last_gamma))
        elif dilation == 4:
            layers.append(block(self.inplanes, planes, stride, downsample=downsample,
                                radix=self.radix, cardinality=self.cardinality,
                                bottleneck_width=self.bottleneck_width,
                                avd=self.avd, avd_first=self.avd_first,
                                dilation=2, is_first=is_first, rectified_conv=self.rectified_conv,
                                rectify_avg=self.rectify_avg,
                                norm_layer=norm_layer, dropblock_prob=dropblock_prob,
                                last_gamma=self.last_gamma))
        else:
            raise RuntimeError("=> unknown dilation size: {}".format(dilation))

        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes,
                                radix=self.radix, cardinality=self.cardinality,
                                bottleneck_width=self.bottleneck_width,
                                avd=self.avd, avd_first=self.avd_first,
                                dilation=dilation, rectified_conv=self.rectified_conv,
                                rectify_avg=self.rectify_avg,
                                norm_layer=norm_layer, dropblock_prob=dropblock_prob,
                                last_gamma=self.last_gamma))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        # print(x.size())

        x = self.avgpool(x)
        #x = x.view(x.size(0), -1)
        x = torch.flatten(x, 1)
        if self.drop:
            x = self.drop(x)
        x = self.fc(x)

        return x