File size: 6,963 Bytes
c20a1af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
import torch.nn.functional as F
import numpy as np

class PathIndex:
    def __init__(self, radius, default_size):
        self.radius = radius
        self.radius_floor = int(np.ceil(radius) - 1)

        self.search_paths, self.search_dst = self.get_search_paths_dst(self.radius)
        self.path_indices, self.src_indices, self.dst_indices = self.get_path_indices(default_size)

    def get_search_paths_dst(self, max_radius=5):
        coord_indices_by_length = [[] for _ in range(max_radius * 4)]

        search_dirs = []
        for x in range(1, max_radius):
            search_dirs.append((0, x))

        for y in range(1, max_radius):
            for x in range(-max_radius + 1, max_radius):
                if x * x + y * y < max_radius ** 2:
                    search_dirs.append((y, x))

        for dir in search_dirs:
            length_sq = dir[0] ** 2 + dir[1] ** 2
            path_coords = []

            min_y, max_y = sorted((0, dir[0]))
            min_x, max_x = sorted((0, dir[1]))

            for y in range(min_y, max_y + 1):
                for x in range(min_x, max_x + 1):

                    dist_sq = (dir[0] * x - dir[1] * y) ** 2 / length_sq

                    if dist_sq < 1:
                        path_coords.append([y, x])

            path_coords.sort(key=lambda x: -abs(x[0]) - abs(x[1]))
            path_length = len(path_coords)

            coord_indices_by_length[path_length].append(path_coords)

        path_list_by_length = [np.asarray(v) for v in coord_indices_by_length if v]
        path_destinations = np.concatenate([p[:, 0] for p in path_list_by_length], axis=0)

        return path_list_by_length, path_destinations

    def get_path_indices(self, size):
        full_indices = np.reshape(np.arange(0, size[0] * size[1], dtype=np.int64), (size[0], size[1]))

        cropped_height = size[0] - self.radius_floor
        cropped_width = size[1] - 2 * self.radius_floor

        path_indices = []
        for paths in self.search_paths:

            path_indices_list = []
            for p in paths:
                coord_indices_list = []

                for dy, dx in p:
                    coord_indices = full_indices[dy:dy + cropped_height,
                                    self.radius_floor + dx:self.radius_floor + dx + cropped_width]
                    coord_indices = np.reshape(coord_indices, [-1])

                    coord_indices_list.append(coord_indices)

                path_indices_list.append(coord_indices_list)

            path_indices.append(np.array(path_indices_list))

        src_indices = np.reshape(full_indices[:cropped_height, self.radius_floor:self.radius_floor + cropped_width], -1)
        dst_indices = np.concatenate([p[:,0] for p in path_indices], axis=0)

        return path_indices, src_indices, dst_indices


def edge_to_affinity(edge, paths_indices):
    aff_list = []
    edge = edge.view(edge.size(0), -1)

    for i in range(len(paths_indices)):
        if isinstance(paths_indices[i], np.ndarray):
            paths_indices[i] = torch.from_numpy(paths_indices[i])
        paths_indices[i] = paths_indices[i].cuda(non_blocking=True)

    for ind in paths_indices:
        ind_flat = ind.view(-1)
        dist = torch.index_select(edge, dim=-1, index=ind_flat)
        dist = dist.view(dist.size(0), ind.size(0), ind.size(1), ind.size(2))
        aff = torch.squeeze(1 - F.max_pool2d(dist, (dist.size(2), 1)), dim=2)
        aff_list.append(aff)
    aff_cat = torch.cat(aff_list, dim=1)

    return aff_cat


def affinity_sparse2dense(affinity_sparse, ind_from, ind_to, n_vertices):
    ind_from = torch.from_numpy(ind_from)
    ind_to = torch.from_numpy(ind_to)

    affinity_sparse = affinity_sparse.view(-1).cpu()
    ind_from = ind_from.repeat(ind_to.size(0)).view(-1)
    ind_to = ind_to.view(-1)

    indices = torch.stack([ind_from, ind_to])
    indices_tp = torch.stack([ind_to, ind_from])

    indices_id = torch.stack([torch.arange(0, n_vertices).long(), torch.arange(0, n_vertices).long()])

    affinity_dense = torch.sparse.FloatTensor(torch.cat([indices, indices_id, indices_tp], dim=1),
                                       torch.cat([affinity_sparse, torch.ones([n_vertices]), affinity_sparse])).to_dense().cuda()

    return affinity_dense


def to_transition_matrix(affinity_dense, beta, times):
    scaled_affinity = torch.pow(affinity_dense, beta)

    trans_mat = scaled_affinity / torch.sum(scaled_affinity, dim=0, keepdim=True)
    for _ in range(times):
        trans_mat = torch.matmul(trans_mat, trans_mat)

    return trans_mat

def propagate_to_edge(x, edge, radius=5, beta=10, exp_times=8):
    height, width = x.shape[-2:]

    hor_padded = width+radius*2
    ver_padded = height+radius

    path_index = PathIndex(radius=radius, default_size=(ver_padded, hor_padded))
    
    edge_padded = F.pad(edge, (radius, radius, 0, radius), mode='constant', value=1.0)
    sparse_aff = edge_to_affinity(torch.unsqueeze(edge_padded, 0),
                                  path_index.path_indices)

    dense_aff = affinity_sparse2dense(sparse_aff, path_index.src_indices,
                                      path_index.dst_indices, ver_padded * hor_padded)
    dense_aff = dense_aff.view(ver_padded, hor_padded, ver_padded, hor_padded)
    dense_aff = dense_aff[:-radius, radius:-radius, :-radius, radius:-radius]
    dense_aff = dense_aff.reshape(height * width, height * width)

    trans_mat = to_transition_matrix(dense_aff, beta=beta, times=exp_times)

    x = x.view(-1, height, width) * (1 - edge)

    rw = torch.matmul(x.view(-1, height * width), trans_mat)
    rw = rw.view(rw.size(0), 1, height, width)

    return rw

class GetAffinityLabelFromIndices():
    def __init__(self, indices_from, indices_to):
        self.indices_from = indices_from
        self.indices_to = indices_to

    def __call__(self, segm_map):
        segm_map_flat = np.reshape(segm_map, -1)
        
        segm_label_from = np.expand_dims(segm_map_flat[self.indices_from], axis=0)
        segm_label_to = segm_map_flat[self.indices_to]

        valid_label = np.logical_and(np.less(segm_label_from, 21), np.less(segm_label_to, 21))

        equal_label = np.equal(segm_label_from, segm_label_to)

        pos_affinity_label = np.logical_and(equal_label, valid_label)

        bg_pos_affinity_label = np.logical_and(pos_affinity_label, np.equal(segm_label_from, 0)).astype(np.float32)
        fg_pos_affinity_label = np.logical_and(pos_affinity_label, np.greater(segm_label_from, 0)).astype(np.float32)

        neg_affinity_label = np.logical_and(np.logical_not(equal_label), valid_label).astype(np.float32)

        return torch.from_numpy(bg_pos_affinity_label), torch.from_numpy(fg_pos_affinity_label), torch.from_numpy(neg_affinity_label)