Spaces:
Sleeping
Sleeping
File size: 3,279 Bytes
def91b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\mt\\Music\\are\\.venv\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"import transformers\n",
"from transformers import AutoTokenizer, AutoModelForSequenceClassification\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'transformers'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[8], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtransformers\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m pipeline\n\u001b[0;32m 3\u001b[0m classifier \u001b[38;5;241m=\u001b[39m pipeline(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msentiment-analysis\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 5\u001b[0m \u001b[38;5;28mprint\u001b[39m(classifier(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mWe are very happy to introduce pipeline to the transformers repository.\u001b[39m\u001b[38;5;124m'\u001b[39m))\n",
"\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'transformers'"
]
}
],
"source": [
"from transformers import pipeline\n",
"\n",
"classifier = pipeline('sentiment-analysis')\n",
"\n",
"print(classifier('We are very happy to introduce pipeline to the transformers repository.'))\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'transformers'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[7], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtransformers\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m BertJapaneseTokenizer\n",
"\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'transformers'"
]
}
],
"source": [
"from transformers import BertJapaneseTokenizer\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|