File size: 2,311 Bytes
70e062f 8e201b2 47dc6da 70e062f 47dc6da 70e062f 21e3c04 02bd39c 14b29ac 21e3c04 e5df0e0 77c5cd5 21e3c04 14b29ac 21e3c04 14b29ac 21e3c04 8e201b2 70e062f 8e201b2 95dc8c0 8e201b2 14b29ac 95dc8c0 8e201b2 286bba2 21e3c04 8e201b2 21e3c04 8e201b2 95dc8c0 8e201b2 21e3c04 8e201b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import gradio as gr
import skops.io as sio
import warnings
from sklearn.exceptions import InconsistentVersionWarning
# Suppress the version warnings
warnings.filterwarnings("ignore", category=InconsistentVersionWarning)
# Explicitly specify trusted types
trusted_types = [
"sklearn.pipeline.Pipeline",
"sklearn.preprocessing.OneHotEncoder",
"sklearn.preprocessing.StandardScaler",
"sklearn.compose.ColumnTransformer",
"sklearn.preprocessing.OrdinalEncoder",
"sklearn.impute.SimpleImputer",
"sklearn.tree.DecisionTreeClassifier",
"sklearn.ensemble.RandomForestClassifier",
"numpy.dtype",
]
pipe = sio.load("./Model/drug_pipeline.skops", trusted=trusted_types)
def predict_drug(age, sex, blood_pressure, cholesterol, na_to_k_ratio):
"""Predict drugs based on patient features.
Args:
age (int): Age of patient
sex (str): Sex of patient
blood_pressure (str): Blood pressure level
cholesterol (str): Cholesterol level
na_to_k_ratio (float): Ratio of sodium to potassium in blood
Returns:
str: Predicted drug label
"""
features = [age, sex, blood_pressure, cholesterol, na_to_k_ratio]
predicted_drug = pipe.predict([features])[0]
label = f"Predicted Drug: {predicted_drug}"
return label
inputs = [
gr.Slider(15, 74, step=1, label="Age"),
gr.Radio(["M", "F"], label="Sex"),
gr.Radio(["HIGH", "LOW", "NORMAL"], label="Blood Pressure"),
gr.Radio(["HIGH", "NORMAL"], label="Cholesterol"),
gr.Slider(6.2, 38.2, step=0.1, label="Na_to_K"),
]
outputs = [gr.Label(num_top_classes=5)]
examples = [
[30, "M", "HIGH", "NORMAL", 15.4],
[35, "F", "LOW", "NORMAL", 8],
[50, "M", "HIGH", "HIGH", 34],
]
title = "Drug Classification"
description = "Enter the details to correctly identify Drug type?"
article = "This app is a part of the **[Beginner's Guide to CI/CD for Machine Learning](https://www.datacamp.com/tutorial/ci-cd-for-machine-learning)**. It teaches how to automate training, evaluation, and deployment of models to Hugging Face using GitHub Actions."
gr.Interface(
fn=predict_drug,
inputs=inputs,
outputs=outputs,
examples=examples,
title=title,
description=description,
article=article,
theme=gr.themes.Soft(),
).launch()
|