File size: 2,311 Bytes
70e062f
8e201b2
47dc6da
 
70e062f
47dc6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70e062f
 
21e3c04
02bd39c
14b29ac
 
21e3c04
e5df0e0
77c5cd5
 
21e3c04
14b29ac
 
21e3c04
14b29ac
21e3c04
 
 
 
8e201b2
70e062f
 
8e201b2
95dc8c0
 
 
 
 
8e201b2
 
 
14b29ac
 
 
 
 
 
95dc8c0
8e201b2
 
286bba2
21e3c04
8e201b2
 
21e3c04
8e201b2
 
95dc8c0
8e201b2
 
21e3c04
 
8e201b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import gradio as gr
import skops.io as sio
import warnings
from sklearn.exceptions import InconsistentVersionWarning

# Suppress the version warnings
warnings.filterwarnings("ignore", category=InconsistentVersionWarning)

# Explicitly specify trusted types
trusted_types = [
    "sklearn.pipeline.Pipeline",
    "sklearn.preprocessing.OneHotEncoder",
    "sklearn.preprocessing.StandardScaler",
    "sklearn.compose.ColumnTransformer",
    "sklearn.preprocessing.OrdinalEncoder",
    "sklearn.impute.SimpleImputer",
    "sklearn.tree.DecisionTreeClassifier",
    "sklearn.ensemble.RandomForestClassifier",
    "numpy.dtype",
]
pipe = sio.load("./Model/drug_pipeline.skops", trusted=trusted_types)


def predict_drug(age, sex, blood_pressure, cholesterol, na_to_k_ratio):
    """Predict drugs based on patient features.

    Args:
        age (int): Age of patient
        sex (str): Sex of patient
        blood_pressure (str): Blood pressure level
        cholesterol (str): Cholesterol level
        na_to_k_ratio (float): Ratio of sodium to potassium in blood

    Returns:
        str: Predicted drug label
    """
    features = [age, sex, blood_pressure, cholesterol, na_to_k_ratio]
    predicted_drug = pipe.predict([features])[0]

    label = f"Predicted Drug: {predicted_drug}"
    return label


inputs = [
    gr.Slider(15, 74, step=1, label="Age"),
    gr.Radio(["M", "F"], label="Sex"),
    gr.Radio(["HIGH", "LOW", "NORMAL"], label="Blood Pressure"),
    gr.Radio(["HIGH", "NORMAL"], label="Cholesterol"),
    gr.Slider(6.2, 38.2, step=0.1, label="Na_to_K"),
]
outputs = [gr.Label(num_top_classes=5)]

examples = [
    [30, "M", "HIGH", "NORMAL", 15.4],
    [35, "F", "LOW", "NORMAL", 8],
    [50, "M", "HIGH", "HIGH", 34],
]


title = "Drug Classification"
description = "Enter the details to correctly identify Drug type?"
article = "This app is a part of the **[Beginner's Guide to CI/CD for Machine Learning](https://www.datacamp.com/tutorial/ci-cd-for-machine-learning)**. It teaches how to automate training, evaluation, and deployment of models to Hugging Face using GitHub Actions."


gr.Interface(
    fn=predict_drug,
    inputs=inputs,
    outputs=outputs,
    examples=examples,
    title=title,
    description=description,
    article=article,
    theme=gr.themes.Soft(),
).launch()