Spaces:
Running
Running
add text to speech tab
Browse filesadd text to speech tab (whisper-large-v3 for transcription and translation) + other functions that help this one (check file, split, merge)
app.py
CHANGED
@@ -1,12 +1,50 @@
|
|
1 |
import os
|
|
|
2 |
import random
|
|
|
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
|
|
4 |
from groq import Groq
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def create_history_messages(history):
|
11 |
history_messages = [{"role": "user", "content": m[0]} for m in history]
|
12 |
history_messages.extend([{"role": "assistant", "content": m[1]} for m in history])
|
@@ -18,40 +56,428 @@ def generate_response(prompt, history, model, temperature, max_tokens, top_p, se
|
|
18 |
print(messages)
|
19 |
|
20 |
if seed == 0:
|
21 |
-
seed = random.randint(1,
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import subprocess
|
3 |
import random
|
4 |
+
import numpy as np
|
5 |
+
import json
|
6 |
+
from datetime import timedelta
|
7 |
+
import tempfile
|
8 |
+
import re
|
9 |
import gradio as gr
|
10 |
+
import groq
|
11 |
from groq import Groq
|
12 |
|
13 |
+
|
14 |
+
# setup groq
|
15 |
+
|
16 |
+
client = Groq(api_key=os.environ.get("Groq_Api_Key"))
|
17 |
+
|
18 |
+
def handle_groq_error(e, model_name):
|
19 |
+
error_data = e.args[0]
|
20 |
|
21 |
+
if isinstance(error_data, str):
|
22 |
+
# Use regex to extract the JSON part of the string
|
23 |
+
json_match = re.search(r'(\{.*\})', error_data)
|
24 |
+
if json_match:
|
25 |
+
json_str = json_match.group(1)
|
26 |
+
# Ensure the JSON string is well-formed
|
27 |
+
json_str = json_str.replace("'", '"') # Replace single quotes with double quotes
|
28 |
+
error_data = json.loads(json_str)
|
29 |
+
|
30 |
+
if isinstance(e, groq.RateLimitError):
|
31 |
+
if isinstance(error_data, dict) and 'error' in error_data and 'message' in error_data['error']:
|
32 |
+
error_message = error_data['error']['message']
|
33 |
+
raise gr.Error(error_message)
|
34 |
+
else:
|
35 |
+
raise gr.Error(f"Error during Groq API call: {e}")
|
36 |
+
|
37 |
+
|
38 |
+
# llms
|
39 |
+
|
40 |
+
MAX_SEED = np.iinfo(np.int32).max
|
41 |
+
|
42 |
+
def update_max_tokens(model):
|
43 |
+
if model in ["llama3-70b-8192", "llama3-8b-8192", "gemma-7b-it", "gemma2-9b-it"]:
|
44 |
+
return gr.update(maximum=8192)
|
45 |
+
elif model == "mixtral-8x7b-32768":
|
46 |
+
return gr.update(maximum=32768)
|
47 |
+
|
48 |
def create_history_messages(history):
|
49 |
history_messages = [{"role": "user", "content": m[0]} for m in history]
|
50 |
history_messages.extend([{"role": "assistant", "content": m[1]} for m in history])
|
|
|
56 |
print(messages)
|
57 |
|
58 |
if seed == 0:
|
59 |
+
seed = random.randint(1, MAX_SEED)
|
60 |
+
|
61 |
+
try:
|
62 |
+
stream = client.chat.completions.create(
|
63 |
+
messages=messages,
|
64 |
+
model=model,
|
65 |
+
temperature=temperature,
|
66 |
+
max_tokens=max_tokens,
|
67 |
+
top_p=top_p,
|
68 |
+
seed=seed,
|
69 |
+
stop=None,
|
70 |
+
stream=True,
|
71 |
+
)
|
72 |
+
|
73 |
+
response = ""
|
74 |
+
for chunk in stream:
|
75 |
+
delta_content = chunk.choices[0].delta.content
|
76 |
+
if delta_content is not None:
|
77 |
+
response += delta_content
|
78 |
+
yield response
|
79 |
+
|
80 |
+
return response
|
81 |
+
except Groq.GroqApiException as e:
|
82 |
+
handle_groq_error(e, model)
|
83 |
+
|
84 |
+
# speech to text
|
85 |
+
|
86 |
+
ALLOWED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
87 |
+
MAX_FILE_SIZE_MB = 25
|
88 |
+
CHUNK_SIZE_MB = 25
|
89 |
+
|
90 |
+
LANGUAGE_CODES = {
|
91 |
+
"English": "en",
|
92 |
+
"Chinese": "zh",
|
93 |
+
"German": "de",
|
94 |
+
"Spanish": "es",
|
95 |
+
"Russian": "ru",
|
96 |
+
"Korean": "ko",
|
97 |
+
"French": "fr",
|
98 |
+
"Japanese": "ja",
|
99 |
+
"Portuguese": "pt",
|
100 |
+
"Turkish": "tr",
|
101 |
+
"Polish": "pl",
|
102 |
+
"Catalan": "ca",
|
103 |
+
"Dutch": "nl",
|
104 |
+
"Arabic": "ar",
|
105 |
+
"Swedish": "sv",
|
106 |
+
"Italian": "it",
|
107 |
+
"Indonesian": "id",
|
108 |
+
"Hindi": "hi",
|
109 |
+
"Finnish": "fi",
|
110 |
+
"Vietnamese": "vi",
|
111 |
+
"Hebrew": "he",
|
112 |
+
"Ukrainian": "uk",
|
113 |
+
"Greek": "el",
|
114 |
+
"Malay": "ms",
|
115 |
+
"Czech": "cs",
|
116 |
+
"Romanian": "ro",
|
117 |
+
"Danish": "da",
|
118 |
+
"Hungarian": "hu",
|
119 |
+
"Tamil": "ta",
|
120 |
+
"Norwegian": "no",
|
121 |
+
"Thai": "th",
|
122 |
+
"Urdu": "ur",
|
123 |
+
"Croatian": "hr",
|
124 |
+
"Bulgarian": "bg",
|
125 |
+
"Lithuanian": "lt",
|
126 |
+
"Latin": "la",
|
127 |
+
"Māori": "mi",
|
128 |
+
"Malayalam": "ml",
|
129 |
+
"Welsh": "cy",
|
130 |
+
"Slovak": "sk",
|
131 |
+
"Telugu": "te",
|
132 |
+
"Persian": "fa",
|
133 |
+
"Latvian": "lv",
|
134 |
+
"Bengali": "bn",
|
135 |
+
"Serbian": "sr",
|
136 |
+
"Azerbaijani": "az",
|
137 |
+
"Slovenian": "sl",
|
138 |
+
"Kannada": "kn",
|
139 |
+
"Estonian": "et",
|
140 |
+
"Macedonian": "mk",
|
141 |
+
"Breton": "br",
|
142 |
+
"Basque": "eu",
|
143 |
+
"Icelandic": "is",
|
144 |
+
"Armenian": "hy",
|
145 |
+
"Nepali": "ne",
|
146 |
+
"Mongolian": "mn",
|
147 |
+
"Bosnian": "bs",
|
148 |
+
"Kazakh": "kk",
|
149 |
+
"Albanian": "sq",
|
150 |
+
"Swahili": "sw",
|
151 |
+
"Galician": "gl",
|
152 |
+
"Marathi": "mr",
|
153 |
+
"Panjabi": "pa",
|
154 |
+
"Sinhala": "si",
|
155 |
+
"Khmer": "km",
|
156 |
+
"Shona": "sn",
|
157 |
+
"Yoruba": "yo",
|
158 |
+
"Somali": "so",
|
159 |
+
"Afrikaans": "af",
|
160 |
+
"Occitan": "oc",
|
161 |
+
"Georgian": "ka",
|
162 |
+
"Belarusian": "be",
|
163 |
+
"Tajik": "tg",
|
164 |
+
"Sindhi": "sd",
|
165 |
+
"Gujarati": "gu",
|
166 |
+
"Amharic": "am",
|
167 |
+
"Yiddish": "yi",
|
168 |
+
"Lao": "lo",
|
169 |
+
"Uzbek": "uz",
|
170 |
+
"Faroese": "fo",
|
171 |
+
"Haitian": "ht",
|
172 |
+
"Pashto": "ps",
|
173 |
+
"Turkmen": "tk",
|
174 |
+
"Norwegian Nynorsk": "nn",
|
175 |
+
"Maltese": "mt",
|
176 |
+
"Sanskrit": "sa",
|
177 |
+
"Luxembourgish": "lb",
|
178 |
+
"Burmese": "my",
|
179 |
+
"Tibetan": "bo",
|
180 |
+
"Tagalog": "tl",
|
181 |
+
"Malagasy": "mg",
|
182 |
+
"Assamese": "as",
|
183 |
+
"Tatar": "tt",
|
184 |
+
"Hawaiian": "haw",
|
185 |
+
"Lingala": "ln",
|
186 |
+
"Hausa": "ha",
|
187 |
+
"Bashkir": "ba",
|
188 |
+
"jw": "jw",
|
189 |
+
"Sundanese": "su",
|
190 |
+
}
|
191 |
|
192 |
+
|
193 |
+
def split_audio(audio_file_path, chunk_size_mb):
|
194 |
+
chunk_size = chunk_size_mb * 1024 * 1024 # Convert MB to bytes
|
195 |
+
file_number = 1
|
196 |
+
chunks = []
|
197 |
+
with open(audio_file_path, 'rb') as f:
|
198 |
+
chunk = f.read(chunk_size)
|
199 |
+
while chunk:
|
200 |
+
chunk_name = f"{os.path.splitext(audio_file_path)[0]}_part{file_number:03}.mp3" # Pad file number for correct ordering
|
201 |
+
with open(chunk_name, 'wb') as chunk_file:
|
202 |
+
chunk_file.write(chunk)
|
203 |
+
chunks.append(chunk_name)
|
204 |
+
file_number += 1
|
205 |
+
chunk = f.read(chunk_size)
|
206 |
+
return chunks
|
207 |
+
|
208 |
+
def merge_audio(chunks, output_file_path):
|
209 |
+
with open("temp_list.txt", "w") as f:
|
210 |
+
for file in chunks:
|
211 |
+
f.write(f"file '{file}'\n")
|
212 |
+
try:
|
213 |
+
subprocess.run(
|
214 |
+
[
|
215 |
+
"ffmpeg",
|
216 |
+
"-f",
|
217 |
+
"concat",
|
218 |
+
"-safe", "0",
|
219 |
+
"-i",
|
220 |
+
"temp_list.txt",
|
221 |
+
"-c",
|
222 |
+
"copy",
|
223 |
+
"-y",
|
224 |
+
output_file_path
|
225 |
+
],
|
226 |
+
check=True
|
227 |
+
)
|
228 |
+
os.remove("temp_list.txt")
|
229 |
+
for chunk in chunks:
|
230 |
+
os.remove(chunk)
|
231 |
+
except subprocess.CalledProcessError as e:
|
232 |
+
raise gr.Error(f"Error during audio merging: {e}")
|
233 |
+
|
234 |
+
# Checks file extension, size, and downsamples or splits if needed.
|
235 |
+
def check_file(audio_file_path):
|
236 |
+
if not audio_file_path:
|
237 |
+
raise gr.Error("Please upload an audio file.")
|
238 |
+
|
239 |
+
file_size_mb = os.path.getsize(audio_file_path) / (1024 * 1024)
|
240 |
+
file_extension = audio_file_path.split(".")[-1].lower()
|
241 |
+
|
242 |
+
if file_extension not in ALLOWED_FILE_EXTENSIONS:
|
243 |
+
raise gr.Error(f"Invalid file type (.{file_extension}). Allowed types: {', '.join(ALLOWED_FILE_EXTENSIONS)}")
|
244 |
+
|
245 |
+
if file_size_mb > MAX_FILE_SIZE_MB:
|
246 |
+
gr.Warning(
|
247 |
+
f"File size too large ({file_size_mb:.2f} MB). Attempting to downsample to 16kHz MP3 128kbps. Maximum size allowed: {MAX_FILE_SIZE_MB} MB"
|
248 |
+
)
|
249 |
+
|
250 |
+
output_file_path = os.path.splitext(audio_file_path)[0] + "_downsampled.mp3"
|
251 |
+
try:
|
252 |
+
subprocess.run(
|
253 |
+
[
|
254 |
+
"ffmpeg",
|
255 |
+
"-i",
|
256 |
+
audio_file_path,
|
257 |
+
"-ar",
|
258 |
+
"16000",
|
259 |
+
"-ab",
|
260 |
+
"128k",
|
261 |
+
"-ac",
|
262 |
+
"1",
|
263 |
+
"-y",
|
264 |
+
output_file_path,
|
265 |
+
],
|
266 |
+
check=True
|
267 |
+
)
|
268 |
+
|
269 |
+
# Check size after downsampling
|
270 |
+
downsampled_size_mb = os.path.getsize(output_file_path) / (1024 * 1024)
|
271 |
+
if downsampled_size_mb > MAX_FILE_SIZE_MB:
|
272 |
+
gr.Warning(f"File still too large after downsampling ({downsampled_size_mb:.2f} MB). Splitting into {CHUNK_SIZE_MB} MB chunks.")
|
273 |
+
return split_audio(output_file_path, CHUNK_SIZE_MB), "split"
|
274 |
+
|
275 |
+
return output_file_path, None
|
276 |
+
except subprocess.CalledProcessError as e:
|
277 |
+
raise gr.Error(f"Error during downsampling: {e}")
|
278 |
+
return audio_file_path, None
|
279 |
+
|
280 |
+
|
281 |
+
def transcribe_audio(audio_file_path, model, prompt, language, auto_detect_language):
|
282 |
+
processed_path, split_status = check_file(audio_file_path)
|
283 |
+
full_transcription = ""
|
284 |
+
|
285 |
+
if split_status == "split":
|
286 |
+
processed_chunks = []
|
287 |
+
for i, chunk_path in enumerate(processed_path):
|
288 |
+
try:
|
289 |
+
with open(chunk_path, "rb") as file:
|
290 |
+
transcription = client.audio.transcriptions.create(
|
291 |
+
file=(os.path.basename(chunk_path), file.read()),
|
292 |
+
model=model,
|
293 |
+
prompt=prompt,
|
294 |
+
response_format="text",
|
295 |
+
language=None if auto_detect_language else language,
|
296 |
+
temperature=0.0,
|
297 |
+
)
|
298 |
+
full_transcription += transcription
|
299 |
+
processed_chunks.append(chunk_path)
|
300 |
+
except groq.RateLimitError as e: # Handle rate limit error
|
301 |
+
handle_groq_error(e, model)
|
302 |
+
gr.Warning(f"API limit reached during chunk {i+1}. Returning processed chunks only.")
|
303 |
+
if processed_chunks:
|
304 |
+
merge_audio(processed_chunks, 'merged_output.mp3')
|
305 |
+
return full_transcription, 'merged_output.mp3'
|
306 |
+
else:
|
307 |
+
return "Transcription failed due to API limits.", None
|
308 |
+
merge_audio(processed_path, 'merged_output.mp3')
|
309 |
+
return full_transcription, 'merged_output.mp3'
|
310 |
+
else:
|
311 |
+
try:
|
312 |
+
with open(processed_path, "rb") as file:
|
313 |
+
transcription = client.audio.transcriptions.create(
|
314 |
+
file=(os.path.basename(processed_path), file.read()),
|
315 |
+
model=model,
|
316 |
+
prompt=prompt,
|
317 |
+
response_format="text",
|
318 |
+
language=None if auto_detect_language else language,
|
319 |
+
temperature=0.0,
|
320 |
+
)
|
321 |
+
return transcription.text, None
|
322 |
+
except groq.RateLimitError as e: # Handle rate limit error
|
323 |
+
handle_groq_error(e, model)
|
324 |
+
|
325 |
+
def translate_audio(audio_file_path, model, prompt):
|
326 |
+
processed_path, split_status = check_file(audio_file_path)
|
327 |
+
full_translation = ""
|
328 |
+
|
329 |
+
if split_status == "split":
|
330 |
+
for chunk_path in processed_path:
|
331 |
+
try:
|
332 |
+
with open(chunk_path, "rb") as file:
|
333 |
+
translation = client.audio.translations.create(
|
334 |
+
file=(os.path.basename(chunk_path), file.read()),
|
335 |
+
model=model,
|
336 |
+
prompt=prompt,
|
337 |
+
response_format="text",
|
338 |
+
temperature=0.0,
|
339 |
+
)
|
340 |
+
full_translation += translation
|
341 |
+
except Groq.GroqApiException as e:
|
342 |
+
handle_groq_error(e, model)
|
343 |
+
return f"API limit reached. Partial translation: {full_translation}"
|
344 |
+
return full_translation
|
345 |
+
else:
|
346 |
+
try:
|
347 |
+
with open(processed_path, "rb") as file:
|
348 |
+
translation = client.audio.translations.create(
|
349 |
+
file=(os.path.basename(processed_path), file.read()),
|
350 |
+
model=model,
|
351 |
+
prompt=prompt,
|
352 |
+
response_format="text",
|
353 |
+
temperature=0.0,
|
354 |
+
)
|
355 |
+
return translation
|
356 |
+
except Groq.GroqApiException as e:
|
357 |
+
handle_groq_error(e, model)
|
358 |
+
|
359 |
+
|
360 |
+
with gr.Blocks() as interface:
|
361 |
+
gr.Markdown(
|
362 |
+
"""
|
363 |
+
# Groq API UI
|
364 |
+
Inference by Groq API
|
365 |
+
If you are having API Rate Limit issues, you can retry later based on the [rate limits](https://console.groq.com/docs/rate-limits) or <a href="https://huggingface.co/spaces/Nick088/Fast-Subtitle-Maker?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> with <a href=https://console.groq.com/keys>your own API Key</a> </p>
|
366 |
+
Hugging Face Space by [Nick088](https://linktr.ee/Nick088)
|
367 |
+
"""
|
368 |
+
)
|
369 |
+
with gr.Tabs():
|
370 |
+
with gr.TabItem("LLMs"):
|
371 |
+
with gr.Row():
|
372 |
+
with gr.Column(scale=1, min_width=250):
|
373 |
+
model = gr.Dropdown(
|
374 |
+
choices=[
|
375 |
+
"llama3-70b-8192",
|
376 |
+
"llama3-8b-8192",
|
377 |
+
"mixtral-8x7b-32768",
|
378 |
+
"gemma-7b-it",
|
379 |
+
"gemma2-9b-it",
|
380 |
+
],
|
381 |
+
value="llama3-70b-8192",
|
382 |
+
label="Model",
|
383 |
+
)
|
384 |
+
temperature = gr.Slider(
|
385 |
+
minimum=0.0,
|
386 |
+
maximum=1.0,
|
387 |
+
step=0.01,
|
388 |
+
value=0.5,
|
389 |
+
label="Temperature",
|
390 |
+
info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative.",
|
391 |
+
)
|
392 |
+
max_tokens = gr.Slider(
|
393 |
+
minimum=1,
|
394 |
+
maximum=8192,
|
395 |
+
step=1,
|
396 |
+
value=4096,
|
397 |
+
label="Max Tokens",
|
398 |
+
info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b it, gemma2 9b it, llama 7b & 70b, 32k for mixtral 8x7b.",
|
399 |
+
)
|
400 |
+
top_p = gr.Slider(
|
401 |
+
minimum=0.0,
|
402 |
+
maximum=1.0,
|
403 |
+
step=0.01,
|
404 |
+
value=0.5,
|
405 |
+
label="Top P",
|
406 |
+
info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p.",
|
407 |
+
)
|
408 |
+
seed = gr.Number(
|
409 |
+
precision=0, value=42, label="Seed", info="A starting point to initiate generation, use 0 for random"
|
410 |
+
)
|
411 |
+
model.change(update_max_tokens, inputs=[model], outputs=max_tokens)
|
412 |
+
with gr.Column(scale=1, min_width=400):
|
413 |
+
chatbot = gr.ChatInterface(
|
414 |
+
fn=generate_response,
|
415 |
+
chatbot=None,
|
416 |
+
additional_inputs=[
|
417 |
+
model,
|
418 |
+
temperature,
|
419 |
+
max_tokens,
|
420 |
+
top_p,
|
421 |
+
seed,
|
422 |
+
],
|
423 |
+
)
|
424 |
+
model.change(update_max_tokens, inputs=[model], outputs=max_tokens)
|
425 |
+
with gr.TabItem("Speech To Text"):
|
426 |
+
with gr.Tabs():
|
427 |
+
with gr.TabItem("Transcription"):
|
428 |
+
gr.Markdown("Transcript audio from files to text!")
|
429 |
+
with gr.Row():
|
430 |
+
audio_input = gr.File(
|
431 |
+
type="filepath", label="Upload File containing Audio", file_types=[f".{ext}" for ext in ALLOWED_FILE_EXTENSIONS]
|
432 |
+
)
|
433 |
+
model_choice_transcribe = gr.Dropdown(
|
434 |
+
choices=["whisper-large-v3"], # Only include 'whisper-large-v3'
|
435 |
+
value="whisper-large-v3",
|
436 |
+
label="Model",
|
437 |
+
)
|
438 |
+
with gr.Row():
|
439 |
+
transcribe_prompt = gr.Textbox(
|
440 |
+
label="Prompt (Optional)",
|
441 |
+
info="Specify any context or spelling corrections.",
|
442 |
+
)
|
443 |
+
with gr.Column():
|
444 |
+
language = gr.Dropdown(
|
445 |
+
choices=[(lang, code) for lang, code in LANGUAGE_CODES.items()],
|
446 |
+
value="en",
|
447 |
+
label="Language",
|
448 |
+
)
|
449 |
+
auto_detect_language = gr.Checkbox(label="Auto Detect Language")
|
450 |
+
transcribe_button = gr.Button("Transcribe")
|
451 |
+
transcription_output = gr.Textbox(label="Transcription")
|
452 |
+
merged_audio_output = gr.File(label="Merged Audio (if chunked)")
|
453 |
+
transcribe_button.click(
|
454 |
+
transcribe_audio,
|
455 |
+
inputs=[audio_input, model_choice_transcribe, transcribe_prompt, language, auto_detect_language],
|
456 |
+
outputs=[transcription_output, merged_audio_output],
|
457 |
+
)
|
458 |
+
with gr.TabItem("Translation"):
|
459 |
+
gr.Markdown("Transcript audio from files and translate them to English text!")
|
460 |
+
with gr.Row():
|
461 |
+
audio_input_translate = gr.File(
|
462 |
+
type="filepath", label="Upload File containing Audio", file_types=[f".{ext}" for ext in ALLOWED_FILE_EXTENSIONS]
|
463 |
+
)
|
464 |
+
model_choice_translate = gr.Dropdown(
|
465 |
+
choices=["whisper-large-v3"], # Only include 'whisper-large-v3'
|
466 |
+
value="whisper-large-v3",
|
467 |
+
label="Model",
|
468 |
+
)
|
469 |
+
with gr.Row():
|
470 |
+
translate_prompt = gr.Textbox(
|
471 |
+
label="Prompt (Optional)",
|
472 |
+
info="Specify any context or spelling corrections.",
|
473 |
+
)
|
474 |
+
translate_button = gr.Button("Translate")
|
475 |
+
translation_output = gr.Textbox(label="Translation")
|
476 |
+
translate_button.click(
|
477 |
+
translate_audio,
|
478 |
+
inputs=[audio_input_translate, model_choice_translate, translate_prompt],
|
479 |
+
outputs=translation_output,
|
480 |
+
)
|
481 |
+
|
482 |
+
|
483 |
+
interface.launch(share=True)
|