Spaces:
Runtime error
Runtime error
import os | |
import numpy as np | |
import cv2 | |
import time | |
from tqdm import tqdm | |
import multiprocessing | |
import glob | |
import mediapipe as mp | |
from mediapipe import solutions | |
from mediapipe.framework.formats import landmark_pb2 | |
from mediapipe.tasks import python | |
from mediapipe.tasks.python import vision | |
from . import face_landmark | |
CUR_DIR = os.path.dirname(__file__) | |
class LMKExtractor(): | |
def __init__(self, FPS=25): | |
# Create an FaceLandmarker object. | |
self.mode = mp.tasks.vision.FaceDetectorOptions.running_mode.IMAGE | |
base_options = python.BaseOptions(model_asset_path=os.path.join(CUR_DIR, 'mp_models/face_landmarker_v2_with_blendshapes.task')) | |
base_options.delegate = mp.tasks.BaseOptions.Delegate.CPU | |
options = vision.FaceLandmarkerOptions(base_options=base_options, | |
running_mode=self.mode, | |
output_face_blendshapes=True, | |
output_facial_transformation_matrixes=True, | |
num_faces=1) | |
self.detector = face_landmark.FaceLandmarker.create_from_options(options) | |
self.last_ts = 0 | |
self.frame_ms = int(1000 / FPS) | |
det_base_options = python.BaseOptions(model_asset_path=os.path.join(CUR_DIR, 'mp_models/blaze_face_short_range.tflite')) | |
det_options = vision.FaceDetectorOptions(base_options=det_base_options) | |
self.det_detector = vision.FaceDetector.create_from_options(det_options) | |
def __call__(self, img): | |
frame = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame) | |
t0 = time.time() | |
if self.mode == mp.tasks.vision.FaceDetectorOptions.running_mode.VIDEO: | |
det_result = self.det_detector.detect(image) | |
if len(det_result.detections) != 1: | |
return None | |
self.last_ts += self.frame_ms | |
try: | |
detection_result, mesh3d = self.detector.detect_for_video(image, timestamp_ms=self.last_ts) | |
except: | |
return None | |
elif self.mode == mp.tasks.vision.FaceDetectorOptions.running_mode.IMAGE: | |
# det_result = self.det_detector.detect(image) | |
# if len(det_result.detections) != 1: | |
# return None | |
try: | |
detection_result, mesh3d = self.detector.detect(image) | |
except: | |
return None | |
bs_list = detection_result.face_blendshapes | |
if len(bs_list) == 1: | |
bs = bs_list[0] | |
bs_values = [] | |
for index in range(len(bs)): | |
bs_values.append(bs[index].score) | |
bs_values = bs_values[1:] # remove neutral | |
trans_mat = detection_result.facial_transformation_matrixes[0] | |
face_landmarks_list = detection_result.face_landmarks | |
face_landmarks = face_landmarks_list[0] | |
lmks = [] | |
for index in range(len(face_landmarks)): | |
x = face_landmarks[index].x | |
y = face_landmarks[index].y | |
z = face_landmarks[index].z | |
lmks.append([x, y, z]) | |
lmks = np.array(lmks) | |
lmks3d = np.array(mesh3d.vertex_buffer) | |
lmks3d = lmks3d.reshape(-1, 5)[:, :3] | |
mp_tris = np.array(mesh3d.index_buffer).reshape(-1, 3) + 1 | |
return { | |
"lmks": lmks, | |
'lmks3d': lmks3d, | |
"trans_mat": trans_mat, | |
'faces': mp_tris, | |
"bs": bs_values | |
} | |
else: | |
# print('multiple faces in the image: {}'.format(img_path)) | |
return None | |