kimjy0411's picture
Update app.py
4e83425 verified
raw
history blame
18.9 kB
import gradio as gr
import os
import shutil
import ffmpeg
from datetime import datetime
from pathlib import Path
import numpy as np
import cv2
import random
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection
from scipy.interpolate import interp1d
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames, save_videos_grid
from src.audio_models.model import Audio2MeshModel
from src.audio_models.pose_model import Audio2PoseModel
from src.utils.audio_util import prepare_audio_feature
from src.utils.mp_utils import LMKExtractor
from src.utils.draw_util import FaceMeshVisualizer
from src.utils.pose_util import project_points, project_points_with_trans, matrix_to_euler_and_translation, euler_and_translation_to_matrix, smooth_pose_seq
from src.utils.util import crop_face
from src.utils.frame_interpolation import init_frame_interpolation_model, batch_images_interpolation_tool
config = OmegaConf.load('./configs/prompts/animation_audio.yaml')
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
audio_infer_config = OmegaConf.load(config.audio_inference_config)
# prepare model
a2m_model = Audio2MeshModel(audio_infer_config['a2m_model'])
a2m_model.load_state_dict(torch.load(audio_infer_config['pretrained_model']['a2m_ckpt'], map_location="cpu"), strict=False)
a2m_model.cuda().eval()
a2p_model = Audio2PoseModel(audio_infer_config['a2p_model'])
a2p_model.load_state_dict(torch.load(audio_infer_config['pretrained_model']['a2p_ckpt']), strict=False)
a2p_model.cuda().eval()
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to("cuda", dtype=weight_dtype)
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device="cuda")
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device="cuda")
pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention
image_enc = CLIPVisionModelWithProjection.from_pretrained(
config.image_encoder_path
).to(dtype=weight_dtype, device="cuda")
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
# load pretrained weights
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
pose_guider.load_state_dict(
torch.load(config.pose_guider_path, map_location="cpu"),
)
pipe = Pose2VideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
)
pipe = pipe.to("cuda", dtype=weight_dtype)
frame_inter_model = init_frame_interpolation_model()
def get_headpose_temp(input_video):
lmk_extractor = LMKExtractor()
cap = cv2.VideoCapture(input_video)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
trans_mat_list = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
result = lmk_extractor(frame)
trans_mat_list.append(result['trans_mat'].astype(np.float32))
cap.release()
trans_mat_arr = np.array(trans_mat_list)
# compute delta pose
trans_mat_inv_frame_0 = np.linalg.inv(trans_mat_arr[0])
pose_arr = np.zeros([trans_mat_arr.shape[0], 6])
for i in range(pose_arr.shape[0]):
pose_mat = trans_mat_inv_frame_0 @ trans_mat_arr[i]
euler_angles, translation_vector = matrix_to_euler_and_translation(pose_mat)
pose_arr[i, :3] = euler_angles
pose_arr[i, 3:6] = translation_vector
# interpolate to 30 fps
new_fps = 30
old_time = np.linspace(0, total_frames / fps, total_frames)
new_time = np.linspace(0, total_frames / fps, int(total_frames * new_fps / fps))
pose_arr_interp = np.zeros((len(new_time), 6))
for i in range(6):
interp_func = interp1d(old_time, pose_arr[:, i])
pose_arr_interp[:, i] = interp_func(new_time)
pose_arr_smooth = smooth_pose_seq(pose_arr_interp)
return pose_arr_smooth
def audio2video(input_audio, ref_img, headpose_video=None, size=512, steps=25, length=60, seed=42, acc_flag=True):
fps = 30
cfg = 3.5
fi_step = 3 if acc_flag else 1
generator = torch.manual_seed(seed)
lmk_extractor = LMKExtractor()
vis = FaceMeshVisualizer()
width, height = size, size
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"
save_dir = Path(f"output/{date_str}/{save_dir_name}")
while os.path.exists(save_dir):
save_dir = Path(f"output/{date_str}/{save_dir_name}_{np.random.randint(10000):04d}")
save_dir.mkdir(exist_ok=True, parents=True)
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
ref_image_np = crop_face(ref_image_np, lmk_extractor)
if ref_image_np is None:
return None, Image.fromarray(ref_img)
ref_image_np = cv2.resize(ref_image_np, (size, size))
ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
face_result = lmk_extractor(ref_image_np)
if face_result is None:
return None, ref_image_pil
lmks = face_result['lmks'].astype(np.float32)
ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
sample = prepare_audio_feature(input_audio, wav2vec_model_path=audio_infer_config['a2m_model']['model_path'])
sample['audio_feature'] = torch.from_numpy(sample['audio_feature']).float().cuda()
sample['audio_feature'] = sample['audio_feature'].unsqueeze(0)
# inference
pred = a2m_model.infer(sample['audio_feature'], sample['seq_len'])
pred = pred.squeeze().detach().cpu().numpy()
pred = pred.reshape(pred.shape[0], -1, 3)
pred = pred + face_result['lmks3d']
if headpose_video is not None:
pose_seq = get_headpose_temp(headpose_video)
mirrored_pose_seq = np.concatenate((pose_seq, pose_seq[-2:0:-1]), axis=0)
pose_seq = np.tile(mirrored_pose_seq, (sample['seq_len'] // len(mirrored_pose_seq) + 1, 1))[:sample['seq_len']]
else:
id_seed = random.randint(0, 99)
id_seed = torch.LongTensor([id_seed]).cuda()
# Currently, only inference up to a maximum length of 10 seconds is supported.
chunk_duration = 5 # 5 seconds
sr = 16000
fps = 30
chunk_size = sr * chunk_duration
audio_chunks = list(sample['audio_feature'].split(chunk_size, dim=1))
seq_len_list = [chunk_duration*fps] * (len(audio_chunks) - 1) + [sample['seq_len'] % (chunk_duration*fps)] # 30 fps
audio_chunks[-2] = torch.cat((audio_chunks[-2], audio_chunks[-1]), dim=1)
seq_len_list[-2] = seq_len_list[-2] + seq_len_list[-1]
del audio_chunks[-1]
del seq_len_list[-1]
pose_seq = []
for audio, seq_len in zip(audio_chunks, seq_len_list):
pose_seq_chunk = a2p_model.infer(audio, seq_len, id_seed)
pose_seq_chunk = pose_seq_chunk.squeeze().detach().cpu().numpy()
pose_seq_chunk[:, :3] *= 0.5
pose_seq.append(pose_seq_chunk)
pose_seq = np.concatenate(pose_seq, 0)
pose_seq = smooth_pose_seq(pose_seq, 7)
# project 3D mesh to 2D landmark
projected_vertices = project_points(pred, face_result['trans_mat'], pose_seq, [height, width])
pose_images = []
for i, verts in enumerate(projected_vertices):
lmk_img = vis.draw_landmarks((width, height), verts, normed=False)
pose_images.append(lmk_img)
pose_list = []
args_L = len(pose_images) if length==0 or length > len(pose_images) else length
for pose_image_np in pose_images[: args_L : fi_step]:
pose_image_np = cv2.resize(pose_image_np, (width, height))
pose_list.append(pose_image_np)
pose_list = np.array(pose_list)
video_length = len(pose_list)
video = pipe(
ref_image_pil,
pose_list,
ref_pose,
width,
height,
video_length,
steps,
cfg,
generator=generator,
).videos
if acc_flag:
video = batch_images_interpolation_tool(video, frame_inter_model, inter_frames=fi_step-1)
save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
save_videos_grid(
video,
save_path,
n_rows=1,
fps=fps,
)
stream = ffmpeg.input(save_path)
audio = ffmpeg.input(input_audio)
ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
os.remove(save_path)
return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil
def video2video(ref_img, source_video, size=512, steps=25, length=60, seed=42, acc_flag=True):
cfg = 3.5
fi_step = 3 if acc_flag else 1
generator = torch.manual_seed(seed)
lmk_extractor = LMKExtractor()
vis = FaceMeshVisualizer()
width, height = size, size
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"
save_dir = Path(f"output/{date_str}/{save_dir_name}")
while os.path.exists(save_dir):
save_dir = Path(f"output/{date_str}/{save_dir_name}_{np.random.randint(10000):04d}")
save_dir.mkdir(exist_ok=True, parents=True)
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
ref_image_np = crop_face(ref_image_np, lmk_extractor)
if ref_image_np is None:
return None, Image.fromarray(ref_img)
ref_image_np = cv2.resize(ref_image_np, (size, size))
ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
face_result = lmk_extractor(ref_image_np)
if face_result is None:
return None, ref_image_pil
lmks = face_result['lmks'].astype(np.float32)
ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
source_images = read_frames(source_video)
src_fps = get_fps(source_video)
step = 1
if src_fps == 60:
src_fps = 30
step = 2
pose_trans_list = []
verts_list = []
bs_list = []
args_L = len(source_images) if length==0 or length*step > len(source_images) else length*step
for src_image_pil in source_images[: args_L : step*fi_step]:
src_img_np = cv2.cvtColor(np.array(src_image_pil), cv2.COLOR_RGB2BGR)
frame_height, frame_width, _ = src_img_np.shape
src_img_result = lmk_extractor(src_img_np)
if src_img_result is None:
break
pose_trans_list.append(src_img_result['trans_mat'])
verts_list.append(src_img_result['lmks3d'])
bs_list.append(src_img_result['bs'])
trans_mat_arr = np.array(pose_trans_list)
verts_arr = np.array(verts_list)
bs_arr = np.array(bs_list)
min_bs_idx = np.argmin(bs_arr.sum(1))
# compute delta pose
pose_arr = np.zeros([trans_mat_arr.shape[0], 6])
for i in range(pose_arr.shape[0]):
euler_angles, translation_vector = matrix_to_euler_and_translation(trans_mat_arr[i]) # real pose of source
pose_arr[i, :3] = euler_angles
pose_arr[i, 3:6] = translation_vector
init_tran_vec = face_result['trans_mat'][:3, 3] # init translation of tgt
pose_arr[:, 3:6] = pose_arr[:, 3:6] - pose_arr[0, 3:6] + init_tran_vec # (relative translation of source) + (init translation of tgt)
pose_arr_smooth = smooth_pose_seq(pose_arr, window_size=3)
pose_mat_smooth = [euler_and_translation_to_matrix(pose_arr_smooth[i][:3], pose_arr_smooth[i][3:6]) for i in range(pose_arr_smooth.shape[0])]
pose_mat_smooth = np.array(pose_mat_smooth)
# face retarget
verts_arr = verts_arr - verts_arr[min_bs_idx] + face_result['lmks3d']
# project 3D mesh to 2D landmark
projected_vertices = project_points_with_trans(verts_arr, pose_mat_smooth, [frame_height, frame_width])
pose_list = []
for i, verts in enumerate(projected_vertices):
lmk_img = vis.draw_landmarks((frame_width, frame_height), verts, normed=False)
pose_image_np = cv2.resize(lmk_img, (width, height))
pose_list.append(pose_image_np)
pose_list = np.array(pose_list)
video_length = len(pose_list)
video = pipe(
ref_image_pil,
pose_list,
ref_pose,
width,
height,
video_length,
steps,
cfg,
generator=generator,
).videos
if acc_flag:
video = batch_images_interpolation_tool(video, frame_inter_model, inter_frames=fi_step-1)
save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
save_videos_grid(
video,
save_path,
n_rows=1,
fps=src_fps,
)
audio_output = f'{save_dir}/audio_from_video.aac'
# extract audio
try:
ffmpeg.input(source_video).output(audio_output, acodec='copy').run()
# merge audio and video
stream = ffmpeg.input(save_path)
audio = ffmpeg.input(audio_output)
ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
os.remove(save_path)
os.remove(audio_output)
except:
shutil.move(
save_path,
save_path.replace('_noaudio.mp4', '.mp4')
)
return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil
################# GUI ################
title = r"""
<h1>AniPortrait</h1>
"""
description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/Zejun-Yang/AniPortrait' target='_blank'><b>AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animations</b></a>.<br>
"""
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Tab("Audio2video"):
with gr.Row():
with gr.Column():
with gr.Row():
a2v_input_audio = gr.Audio(sources=["upload", "microphone"], type="filepath", editable=True, label="Input audio", interactive=True)
a2v_ref_img = gr.Image(label="Upload reference image", sources="upload")
a2v_headpose_video = gr.Video(label="Option: upload head pose reference video", sources="upload")
with gr.Row():
a2v_size_slider = gr.Slider(minimum=256, maximum=768, step=8, value=512, label="Video size (-W & -H)")
a2v_step_slider = gr.Slider(minimum=5, maximum=30, step=1, value=25, label="Steps (--steps)")
with gr.Row():
a2v_length = gr.Slider(minimum=0, maximum=9999, step=1, value=60, label="Length (-L) (Set to 0 to automatically calculate length)")
a2v_seed = gr.Number(value=42, label="Seed (--seed)")
with gr.Row():
a2v_acc_flag = gr.Checkbox(value=True, label="Accelerate")
a2v_botton = gr.Button("Generate", variant="primary")
a2v_output_video = gr.PlayableVideo(label="Result", interactive=False)
gr.Examples(
examples=[
["configs/inference/audio/lyl.wav", "configs/inference/ref_images/Aragaki.png", None],
["configs/inference/audio/lyl.wav", "configs/inference/ref_images/solo.png", None],
["configs/inference/audio/lyl.wav", "configs/inference/ref_images/lyl.png", "configs/inference/head_pose_temp/pose_ref_video.mp4"],
],
inputs=[a2v_input_audio, a2v_ref_img, a2v_headpose_video],
)
with gr.Tab("Video2video"):
with gr.Row():
with gr.Column():
with gr.Row():
v2v_ref_img = gr.Image(label="Upload reference image", sources="upload")
v2v_source_video = gr.Video(label="Upload source video", sources="upload")
with gr.Row():
v2v_size_slider = gr.Slider(minimum=256, maximum=768, step=8, value=512, label="Video size (-W & -H)")
v2v_step_slider = gr.Slider(minimum=5, maximum=30, step=1, value=25, label="Steps (--steps)")
with gr.Row():
v2v_length = gr.Slider(minimum=0, maximum=9999, step=1, value=60, label="Length (-L) (Set to 0 to automatically calculate length)")
v2v_seed = gr.Number(value=42, label="Seed (--seed)")
with gr.Row():
v2v_acc_flag = gr.Checkbox(value=True, label="Accelerate")
v2v_botton = gr.Button("Generate", variant="primary")
v2v_output_video = gr.PlayableVideo(label="Result", interactive=False)
gr.Examples(
examples=[
["configs/inference/ref_images/Aragaki.png", "configs/inference/video/Aragaki_song.mp4"],
["configs/inference/ref_images/solo.png", "configs/inference/video/Aragaki_song.mp4"],
["configs/inference/ref_images/lyl.png", "configs/inference/head_pose_temp/pose_ref_video.mp4"],
],
inputs=[v2v_ref_img, v2v_source_video, a2v_headpose_video],
)
a2v_botton.click(
fn=audio2video,
inputs=[a2v_input_audio, a2v_ref_img, a2v_headpose_video,
a2v_size_slider, a2v_step_slider, a2v_length, a2v_seed, a2v_acc_flag],
outputs=[a2v_output_video, a2v_ref_img]
)
v2v_botton.click(
fn=video2video,
inputs=[v2v_ref_img, v2v_source_video,
v2v_size_slider, v2v_step_slider, v2v_length, v2v_seed, v2v_acc_flag],
outputs=[v2v_output_video, v2v_ref_img]
)
demo.launch()