Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app (1).py +138 -0
- requirements.txt +5 -0
- style.css +36 -0
app (1).py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import PyPDF2
|
3 |
+
import os
|
4 |
+
import openai
|
5 |
+
import re
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
|
8 |
+
class ResumeAnalyser:
|
9 |
+
def __init__(self):
|
10 |
+
pass
|
11 |
+
def extract_text_from_file(self,file_path):
|
12 |
+
# Get the file extension
|
13 |
+
file_extension = os.path.splitext(file_path)[1]
|
14 |
+
|
15 |
+
if file_extension == '.pdf':
|
16 |
+
with open(file_path, 'rb') as file:
|
17 |
+
# Create a PDF file reader object
|
18 |
+
reader = PyPDF2.PdfFileReader(file)
|
19 |
+
|
20 |
+
# Create an empty string to hold the extracted text
|
21 |
+
extracted_text = ""
|
22 |
+
|
23 |
+
# Loop through each page in the PDF and extract the text
|
24 |
+
for page_number in range(reader.getNumPages()):
|
25 |
+
page = reader.getPage(page_number)
|
26 |
+
extracted_text += page.extractText()
|
27 |
+
return extracted_text
|
28 |
+
|
29 |
+
elif file_extension == '.txt':
|
30 |
+
with open(file_path, 'r') as file:
|
31 |
+
# Just read the entire contents of the text file
|
32 |
+
return file.read()
|
33 |
+
|
34 |
+
else:
|
35 |
+
return "Unsupported file type"
|
36 |
+
|
37 |
+
def responce_from_ai(self,textjd, textcv):
|
38 |
+
resume = self.extract_text_from_file(textjd)
|
39 |
+
job_description = self.extract_text_from_file(textcv)
|
40 |
+
|
41 |
+
response = openai.Completion.create(
|
42 |
+
engine="text-davinci-003",
|
43 |
+
prompt=f"""
|
44 |
+
Given the job description and the resume, assess the matching percentage to 100 and if 100 percentage not matched mention the remaining percentage with reason. **Job Description:**{job_description}**Resume:**{resume}
|
45 |
+
**Detailed Analysis:**
|
46 |
+
the result should be in this format:
|
47 |
+
Matched Percentage: [matching percentage].
|
48 |
+
Reason : [Mention Reason and keys from job_description and resume get this matched percentage.].
|
49 |
+
Skills To Improve : [Mention the skills How to improve and get 100 percentage job description matching].
|
50 |
+
Keywords : [matched key words from {job_description} and {resume}].
|
51 |
+
""",
|
52 |
+
temperature=0,
|
53 |
+
max_tokens=100,
|
54 |
+
n=1,
|
55 |
+
stop=None,
|
56 |
+
)
|
57 |
+
generated_text = response.choices[0].text.strip()
|
58 |
+
print(generated_text)
|
59 |
+
return generated_text
|
60 |
+
|
61 |
+
|
62 |
+
def matching_percentage(self,job_description_path, resume_path):
|
63 |
+
job_description_path = job_description_path.name
|
64 |
+
resume_path = resume_path.name
|
65 |
+
|
66 |
+
generated_text = self.responce_from_ai(job_description_path, resume_path)
|
67 |
+
|
68 |
+
result = generated_text
|
69 |
+
|
70 |
+
lines = result.split('\n')
|
71 |
+
|
72 |
+
matched_percentage = None
|
73 |
+
matched_percentage_txt = None
|
74 |
+
reason = None
|
75 |
+
skills_to_improve = None
|
76 |
+
keywords = None
|
77 |
+
|
78 |
+
for line in lines:
|
79 |
+
if line.startswith('Matched Percentage:'):
|
80 |
+
match = re.search(r"Matched Percentage: (\d+)%", line)
|
81 |
+
if match:
|
82 |
+
matched_percentage = int(match.group(1))
|
83 |
+
matched_percentage_txt = (f"Matched Percentage: {matched_percentage}%")
|
84 |
+
elif line.startswith('Reason'):
|
85 |
+
reason = line.split(':')[1].strip()
|
86 |
+
elif line.startswith('Skills To Improve'):
|
87 |
+
skills_to_improve = line.split(':')[1].strip()
|
88 |
+
elif line.startswith('Keywords'):
|
89 |
+
keywords = line.split(':')[1].strip()
|
90 |
+
|
91 |
+
|
92 |
+
# Extract the matched percentage using regular expression
|
93 |
+
# match1 = re.search(r"Matched Percentage: (\d+)%", matched_percentage)
|
94 |
+
# matched_Percentage = int(match1.group(1))
|
95 |
+
|
96 |
+
# Creating a pie chart with plotly
|
97 |
+
labels = ['Matched', 'Remaining']
|
98 |
+
values = [matched_percentage, 100 - matched_percentage]
|
99 |
+
|
100 |
+
fig = go.Figure(data=[go.Pie(labels=labels, values=values)])
|
101 |
+
# fig.update_layout(title='Matched Percentage')
|
102 |
+
|
103 |
+
|
104 |
+
return matched_percentage_txt,reason, skills_to_improve, keywords,fig
|
105 |
+
|
106 |
+
|
107 |
+
def gradio_interface(self):
|
108 |
+
with gr.Blocks(css="style.css",theme='karthikeyan-adople/hudsonhayes-gray') as app:
|
109 |
+
gr.HTML("""<center class="darkblue" style='background-color:rgb(0,1,36); text-align:center;padding:30px;'><center>
|
110 |
+
<img class="leftimage" align="left" src="https://companieslogo.com/img/orig/RAND.AS_BIG-0f1935a4.png?t=1651813778" alt="Image" width="210" height="210">
|
111 |
+
<h1 class ="center" style="color:#fff">ADOPLE AI</h1></center>
|
112 |
+
<br><center><h1 style="color:#fff">Resume Analyser</h1></center>""")
|
113 |
+
|
114 |
+
with gr.Row():
|
115 |
+
with gr.Column(scale=0.45, min_width=150, ):
|
116 |
+
jobDescription = gr.File(label="Job Description")
|
117 |
+
with gr.Column(scale=0.45, min_width=150):
|
118 |
+
resume = gr.File(label="Resume")
|
119 |
+
with gr.Column(scale=0.10, min_width=150):
|
120 |
+
analyse = gr.Button("Analyse")
|
121 |
+
with gr.Row():
|
122 |
+
with gr.Column(scale=1.0, min_width=150):
|
123 |
+
perncentage = gr.Textbox(label="Matching Percentage",lines=8)
|
124 |
+
with gr.Column(scale=1.0, min_width=150):
|
125 |
+
reason = gr.Textbox(label="Matching Reason",lines=8)
|
126 |
+
with gr.Column(scale=1.0, min_width=150):
|
127 |
+
skills = gr.Textbox(label="Skills To Improve",lines=8)
|
128 |
+
with gr.Column(scale=1.0, min_width=150):
|
129 |
+
keywords = gr.Textbox(label="Matched Keywords",lines=8)
|
130 |
+
with gr.Row():
|
131 |
+
with gr.Column(scale=1.0, min_width=150):
|
132 |
+
pychart = gr.Plot(label="Matching Percentage Chart")
|
133 |
+
analyse.click(self.matching_percentage, [jobDescription, resume], [perncentage,reason,skills,keywords,pychart])
|
134 |
+
|
135 |
+
app.launch()
|
136 |
+
|
137 |
+
resume=ResumeAnalyser()
|
138 |
+
resume.gradio_interface()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
gradio
|
3 |
+
PyPDF2==2.12.1
|
4 |
+
plotly
|
5 |
+
plotly-express
|
style.css
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#col-container {
|
2 |
+
max-width: 600px;
|
3 |
+
margin-left: auto;
|
4 |
+
margin-right: auto;
|
5 |
+
}
|
6 |
+
|
7 |
+
#row-flex {
|
8 |
+
display: flex;
|
9 |
+
align-items: center;
|
10 |
+
justify-content: center;
|
11 |
+
}
|
12 |
+
.leftimage .rightimage{
|
13 |
+
float:left;
|
14 |
+
filter: drop-shadow(20px 20px 10px white);
|
15 |
+
}
|
16 |
+
.leftimage{
|
17 |
+
padding-top:0px;
|
18 |
+
margin-left:210px;
|
19 |
+
}
|
20 |
+
.rightimage{
|
21 |
+
padding-top:40px;
|
22 |
+
margin-right:220px;
|
23 |
+
}
|
24 |
+
a,
|
25 |
+
a:hover,
|
26 |
+
a:visited {
|
27 |
+
text-decoration-line: underline;
|
28 |
+
font-weight: 600;
|
29 |
+
color: #1f2937 !important;
|
30 |
+
}
|
31 |
+
|
32 |
+
.dark a,
|
33 |
+
.dark a:hover,
|
34 |
+
.dark a:visited {
|
35 |
+
color: #f3f4f6 !important;
|
36 |
+
}
|